Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Implementing a Scalable and Elastic Computing Environment Based on Cloud Containers

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

In this article we look at the potential of cloud containers and we provide some guidelines for companies and organisations that are starting to look at how to migrate their legacy infrastructure to something modern, reliable and scalable. We propose an architecture that has an excellent relationship between the cost of implementation and the benefits it can bring, based on the “Pilot Light” topology. The services are reconfigured inside small docker containers and the workload is balanced using load balancers that allow horizontal autoscaling techniques to be exploited in the future. By generating additional containers and utilizing the possibilities given by load balancers, companies and network systems experts may model and calibrate infrastructures based on the projected number of users. Containers offer the opportunity to expand the infrastructure and increase processing capacity in a very short time. The proposed approach results in an easily maintainable and fault-tolerant system that could help and simplify the work in particular of small and medium-sized organisations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://dati.istat.it/Index.aspx?DataSetCode=DCSP_ICT.

References

  1. Hayes, B.: Cloud computing. Commun. ACM 51(7), 9–11 (2008). https://doi.org/10.1145/1364782.1364786. ISSN 0001-0782

    Article  Google Scholar 

  2. Antonopoulos, N., Gillam, L.: Cloud Computing. Springer, London (2010). https://doi.org/10.1007/978-1-84996-241-4. ISBN 978-1-4471-2580-8

  3. Basmadjian, R., De Meer, H., Lent, R., Giuliani, G.: Cloud computing and its interest in saving energy: the use case of a private cloud. JoCCASA 1(1), 1–25 (2012). https://doi.org/10.1186/2192-113X-1-5

    Article  Google Scholar 

  4. Doelitzscher, F., Sulistio, A., Reich, C., Kuijs, H., Wolf, D.: Private cloud for collaboration and e-Learning services: from IaaS to SaaS. Computing 91(1), 23–42 (2011). https://doi.org/10.1007/s00607-010-0106-z

    Article  Google Scholar 

  5. Li, A., Yang, X., Kandula, S., Zhang, M.: Comparing public-cloud providers. IEEE Internet Comput. 15(2), 50–53 (2011)

    Article  Google Scholar 

  6. Ren, K., Wang, C., Wang, Q.: Security challenges for the public cloud. IEEE Internet Comput. 16(1), 69–73 (2012)

    Article  Google Scholar 

  7. Li, J., Li, Y.K., Chen, X., Lee, P.P., Lou, W.: A hybrid cloud approach for secure authorized deduplication. IEEE Trans. Parallel Distrib. Syst. 26(5), 1206–1216 (2014)

    Article  Google Scholar 

  8. Buyya, R.: A manifesto for future generation cloud computing: research directions for the next decade. ACM Comput. Surv. 51(5), 1–38 (2018). https://doi.org/10.1145/3241737. ISSN 0360-0300

    Article  Google Scholar 

  9. Gill, S.S., Buyya, R.: A taxonomy and future directions for sustainable cloud computing: 360 degree view. ACM Comput. Surv. (CSUR) 51(5), 1–33 (2018). https://doi.org/10.1145/3241038. ISSN 0360-0300

    Article  Google Scholar 

  10. Santucci, F., Frenguelli, F., De Angelis, A., Cuccaro, I., Perri, D., Simonetti, M.: An immersive open source environment using godot. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 784–798. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_56

    Chapter  Google Scholar 

  11. Simonetti, M., Perri, D., Amato, N., Gervasi, O.: Teaching math with the help of virtual reality. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 799–809. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_57

    Chapter  Google Scholar 

  12. Sreekanti, V., et al.: Cloudburst: stateful functions-as-a-service. Proc. VLDB Endow. 13(12), 2438–2452 (2020). https://doi.org/10.14778/3407790.3407836. ISSN 2150-8097

  13. Biondi, G., Franzoni, V., Gervasi, O., Perri, D.: An approach for improving automatic mouth emotion recognition. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 649–664. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_48

    Chapter  Google Scholar 

  14. Perri, D., Simonetti, M., Lombardi, A., Faginas-Lago, N., Gervasi, O.: Binary classification of proteins by a machine learning approach. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 549–558. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_41

    Chapter  Google Scholar 

  15. Benedetti, P., Perri, D., Simonetti, M., Gervasi, O., Reali, G., Femminella, M.: Skin cancer classification using inception network and transfer learning. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12249, pp. 536–545. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58799-4_39

    Chapter  Google Scholar 

  16. Perri, D., Sylos Labini, P., Gervasi, O., Tasso, S., Vella, F.: Towards a learning-based performance modeling for accelerating deep neural networks. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 665–676. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_49

    Chapter  Google Scholar 

  17. Abdelbaky, M., Diaz-Montes, J., Parashar, M., Unuvar, M., Steinder, M.: Docker containers across multiple clouds and data centers. In: 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC), pp. 368–371 (2015). https://doi.org/10.1109/UCC.2015.58

  18. Maliszewski, A.M., Vogel, A., Griebler, D., Roloff, E., Fernandes, L.G., Oa, N.P.: Minimizing communication overheads in container-based clouds for HPC applications. In: 2019 IEEE Symposium on Computers and Communications (ISCC), pp. 1–6 (2019). https://doi.org/10.1109/ISCC47284.2019.8969716

  19. Zhang, W.Z., Holland, D.H.: Using containers to execute SQL queries in a cloud. In: 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), pp. 26–27 (2018). https://doi.org/10.1109/UCC-Companion.2018.00028

  20. Gong, Z., Gu, X., Wilkes, J.: Press: predictive elastic resource scaling for cloud systems. In: 2010 International Conference on Network and Service Management, pp. 9–16. IEEE (2010)

    Google Scholar 

  21. Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Dynamically scaling applications in the cloud. ACM SIGCOMM Comput. Commun. Rev. 41(1), 45–52 (2011)

    Article  Google Scholar 

  22. Mao, M., Li, J., Humphrey, M.: Cloud auto-scaling with deadline and budget constraints. In: 2010 11th IEEE/ACM International Conference on Grid Computing, pp. 41–48. IEEE (2010)

    Google Scholar 

  23. Alhazmi, O.H., Malaiya, Y.K.: Assessing disaster recovery alternatives: on-site, colocation or cloud. In: 2012 IEEE 23rd International Symposium on Software Reliability Engineering Workshops, pp. 19–20. IEEE (2012)

    Google Scholar 

  24. Alhazmi, O.H., Malaiya, Y.K.: Evaluating disaster recovery plans using the cloud. In: 2013 Proceedings Annual Reliability and Maintainability Symposium (RAMS), pp. 1–6. IEEE (2013)

    Google Scholar 

  25. Chang, V.: Towards a big data system disaster recovery in a private cloud. Ad Hoc Netw. 35, 65–82 (2015)

    Article  Google Scholar 

  26. Khoshkholghi, M.A., Abdullah, A., Latip, R., Subramaniam, S.: Disaster recovery in cloud computing: a survey (2014)

    Google Scholar 

  27. Hamadah, S.: Cloud-based disaster recovery and planning models: an overview. ICIC Express Lett. 13(7), 593–599 (2019)

    Google Scholar 

  28. Boettiger, C.: An introduction to Docker for reproducible research. ACM SIGOPS Oper. Syst. Rev. 49(1), 71–79 (2015)

    Article  Google Scholar 

  29. Turnbull, J.: The Docker Book: Containerization is the new virtualization. James Turnbull (2014)

    Google Scholar 

  30. Combe, T., Martin, A., Di Pietro, R.: To docker or not to docker: a security perspective. IEEE Cloud Comput. 3(5), 54–62 (2016)

    Article  Google Scholar 

  31. Prasetijo, A.B., Widianto, E.D., Hidayatullah, E.T.: Performance comparisons of web server load balancing algorithms on HAProxy and Heartbeat. In: 2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), pp. 393–396. IEEE (2016)

    Google Scholar 

  32. Pramono, L.H., Buwono, R.C., Waskito, Y.G.: Round-robin algorithm in HAProxy and Nginx load balancing performance evaluation: a review. In: 2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), pp. 367–372. IEEE (2018)

    Google Scholar 

  33. Bartholomew, D.: Getting started with MariaDB. Packt Publishing Ltd (2013)

    Google Scholar 

  34. Wood, W.: MariaDB solution. In: Migrating to MariaDB, pp. 59–71. Springer, Berkeley (2019). https://doi.org/10.1007/978-1-4842-3997-1_5

    Chapter  Google Scholar 

  35. Zaslavskiy, M., Kaluzhniy, A., Berlenko, T., Kinyaev, I., Krinkin, K., Turenko, T.: Full automated continuous integration and testing infrastructure for MaxScale and MariaDB. In: 2016 19th Conference of Open Innovations Association (FRUCT), pp. 273–278. IEEE (2016)

    Google Scholar 

  36. Boyer, E.B., Broomfield, M.C., Perrotti, T.A.: Glusterfs one storage server to rule them all. Technical report, Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (2012)

    Google Scholar 

  37. Selvaganesan, M., Liazudeen, M.A.: An insight about GlusterFS and its enforcement techniques. In: 2016 International Conference on Cloud Computing Research and Innovations (ICCCRI), pp. 120–127. IEEE (2016)

    Google Scholar 

  38. Pawlowski, B., Juszczak, C., Staubach, P., Smith, C., Lebel, D., Hitz, D.: NFS version 3: design and implementation. In: USENIX Summer, Boston, MA, pp. 137–152 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damiano Perri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perri, D., Simonetti, M., Tasso, S., Ragni, F., Gervasi, O. (2021). Implementing a Scalable and Elastic Computing Environment Based on Cloud Containers. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics