Abstract
In this article we look at the potential of cloud containers and we provide some guidelines for companies and organisations that are starting to look at how to migrate their legacy infrastructure to something modern, reliable and scalable. We propose an architecture that has an excellent relationship between the cost of implementation and the benefits it can bring, based on the “Pilot Light” topology. The services are reconfigured inside small docker containers and the workload is balanced using load balancers that allow horizontal autoscaling techniques to be exploited in the future. By generating additional containers and utilizing the possibilities given by load balancers, companies and network systems experts may model and calibrate infrastructures based on the projected number of users. Containers offer the opportunity to expand the infrastructure and increase processing capacity in a very short time. The proposed approach results in an easily maintainable and fault-tolerant system that could help and simplify the work in particular of small and medium-sized organisations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hayes, B.: Cloud computing. Commun. ACM 51(7), 9–11 (2008). https://doi.org/10.1145/1364782.1364786. ISSN 0001-0782
Antonopoulos, N., Gillam, L.: Cloud Computing. Springer, London (2010). https://doi.org/10.1007/978-1-84996-241-4. ISBN 978-1-4471-2580-8
Basmadjian, R., De Meer, H., Lent, R., Giuliani, G.: Cloud computing and its interest in saving energy: the use case of a private cloud. JoCCASA 1(1), 1–25 (2012). https://doi.org/10.1186/2192-113X-1-5
Doelitzscher, F., Sulistio, A., Reich, C., Kuijs, H., Wolf, D.: Private cloud for collaboration and e-Learning services: from IaaS to SaaS. Computing 91(1), 23–42 (2011). https://doi.org/10.1007/s00607-010-0106-z
Li, A., Yang, X., Kandula, S., Zhang, M.: Comparing public-cloud providers. IEEE Internet Comput. 15(2), 50–53 (2011)
Ren, K., Wang, C., Wang, Q.: Security challenges for the public cloud. IEEE Internet Comput. 16(1), 69–73 (2012)
Li, J., Li, Y.K., Chen, X., Lee, P.P., Lou, W.: A hybrid cloud approach for secure authorized deduplication. IEEE Trans. Parallel Distrib. Syst. 26(5), 1206–1216 (2014)
Buyya, R.: A manifesto for future generation cloud computing: research directions for the next decade. ACM Comput. Surv. 51(5), 1–38 (2018). https://doi.org/10.1145/3241737. ISSN 0360-0300
Gill, S.S., Buyya, R.: A taxonomy and future directions for sustainable cloud computing: 360 degree view. ACM Comput. Surv. (CSUR) 51(5), 1–33 (2018). https://doi.org/10.1145/3241038. ISSN 0360-0300
Santucci, F., Frenguelli, F., De Angelis, A., Cuccaro, I., Perri, D., Simonetti, M.: An immersive open source environment using godot. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 784–798. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_56
Simonetti, M., Perri, D., Amato, N., Gervasi, O.: Teaching math with the help of virtual reality. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 799–809. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_57
Sreekanti, V., et al.: Cloudburst: stateful functions-as-a-service. Proc. VLDB Endow. 13(12), 2438–2452 (2020). https://doi.org/10.14778/3407790.3407836. ISSN 2150-8097
Biondi, G., Franzoni, V., Gervasi, O., Perri, D.: An approach for improving automatic mouth emotion recognition. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 649–664. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_48
Perri, D., Simonetti, M., Lombardi, A., Faginas-Lago, N., Gervasi, O.: Binary classification of proteins by a machine learning approach. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12255, pp. 549–558. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58820-5_41
Benedetti, P., Perri, D., Simonetti, M., Gervasi, O., Reali, G., Femminella, M.: Skin cancer classification using inception network and transfer learning. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12249, pp. 536–545. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58799-4_39
Perri, D., Sylos Labini, P., Gervasi, O., Tasso, S., Vella, F.: Towards a learning-based performance modeling for accelerating deep neural networks. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 665–676. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_49
Abdelbaky, M., Diaz-Montes, J., Parashar, M., Unuvar, M., Steinder, M.: Docker containers across multiple clouds and data centers. In: 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC), pp. 368–371 (2015). https://doi.org/10.1109/UCC.2015.58
Maliszewski, A.M., Vogel, A., Griebler, D., Roloff, E., Fernandes, L.G., Oa, N.P.: Minimizing communication overheads in container-based clouds for HPC applications. In: 2019 IEEE Symposium on Computers and Communications (ISCC), pp. 1–6 (2019). https://doi.org/10.1109/ISCC47284.2019.8969716
Zhang, W.Z., Holland, D.H.: Using containers to execute SQL queries in a cloud. In: 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), pp. 26–27 (2018). https://doi.org/10.1109/UCC-Companion.2018.00028
Gong, Z., Gu, X., Wilkes, J.: Press: predictive elastic resource scaling for cloud systems. In: 2010 International Conference on Network and Service Management, pp. 9–16. IEEE (2010)
Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Dynamically scaling applications in the cloud. ACM SIGCOMM Comput. Commun. Rev. 41(1), 45–52 (2011)
Mao, M., Li, J., Humphrey, M.: Cloud auto-scaling with deadline and budget constraints. In: 2010 11th IEEE/ACM International Conference on Grid Computing, pp. 41–48. IEEE (2010)
Alhazmi, O.H., Malaiya, Y.K.: Assessing disaster recovery alternatives: on-site, colocation or cloud. In: 2012 IEEE 23rd International Symposium on Software Reliability Engineering Workshops, pp. 19–20. IEEE (2012)
Alhazmi, O.H., Malaiya, Y.K.: Evaluating disaster recovery plans using the cloud. In: 2013 Proceedings Annual Reliability and Maintainability Symposium (RAMS), pp. 1–6. IEEE (2013)
Chang, V.: Towards a big data system disaster recovery in a private cloud. Ad Hoc Netw. 35, 65–82 (2015)
Khoshkholghi, M.A., Abdullah, A., Latip, R., Subramaniam, S.: Disaster recovery in cloud computing: a survey (2014)
Hamadah, S.: Cloud-based disaster recovery and planning models: an overview. ICIC Express Lett. 13(7), 593–599 (2019)
Boettiger, C.: An introduction to Docker for reproducible research. ACM SIGOPS Oper. Syst. Rev. 49(1), 71–79 (2015)
Turnbull, J.: The Docker Book: Containerization is the new virtualization. James Turnbull (2014)
Combe, T., Martin, A., Di Pietro, R.: To docker or not to docker: a security perspective. IEEE Cloud Comput. 3(5), 54–62 (2016)
Prasetijo, A.B., Widianto, E.D., Hidayatullah, E.T.: Performance comparisons of web server load balancing algorithms on HAProxy and Heartbeat. In: 2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), pp. 393–396. IEEE (2016)
Pramono, L.H., Buwono, R.C., Waskito, Y.G.: Round-robin algorithm in HAProxy and Nginx load balancing performance evaluation: a review. In: 2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), pp. 367–372. IEEE (2018)
Bartholomew, D.: Getting started with MariaDB. Packt Publishing Ltd (2013)
Wood, W.: MariaDB solution. In: Migrating to MariaDB, pp. 59–71. Springer, Berkeley (2019). https://doi.org/10.1007/978-1-4842-3997-1_5
Zaslavskiy, M., Kaluzhniy, A., Berlenko, T., Kinyaev, I., Krinkin, K., Turenko, T.: Full automated continuous integration and testing infrastructure for MaxScale and MariaDB. In: 2016 19th Conference of Open Innovations Association (FRUCT), pp. 273–278. IEEE (2016)
Boyer, E.B., Broomfield, M.C., Perrotti, T.A.: Glusterfs one storage server to rule them all. Technical report, Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (2012)
Selvaganesan, M., Liazudeen, M.A.: An insight about GlusterFS and its enforcement techniques. In: 2016 International Conference on Cloud Computing Research and Innovations (ICCCRI), pp. 120–127. IEEE (2016)
Pawlowski, B., Juszczak, C., Staubach, P., Smith, C., Lebel, D., Hitz, D.: NFS version 3: design and implementation. In: USENIX Summer, Boston, MA, pp. 137–152 (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Perri, D., Simonetti, M., Tasso, S., Ragni, F., Gervasi, O. (2021). Implementing a Scalable and Elastic Computing Environment Based on Cloud Containers. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_49
Download citation
DOI: https://doi.org/10.1007/978-3-030-86653-2_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86652-5
Online ISBN: 978-3-030-86653-2
eBook Packages: Computer ScienceComputer Science (R0)