Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

GridTrack: Detection and Tracking of Multiple Objects in Dynamic Occupancy Grids

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12899))

Included in the following conference series:

  • 975 Accesses

Abstract

Multiple Object Tracking is an important task for autonomous vehicles. However, it gets difficult to track objects when it is hard to detect them due to occlusion or distance to the sensors. We propose a method, “GridTrack”, to overcome this difficulty. We fuse a dynamic occupancy grid map (DOGMa) with an object detector. DOGMa is obtained by applying a Bayesian filter on raw sensor data. This improves the tracking of the partially observed/unobserved objects with the help of the Bayesian filter on raw data, which has a powerful prediction capability. We develop a network to track the objects on the grid and fuse information from previous detections in this network. The experiments show that the multi-object tracking accuracy is high with the usage of the proposed method.

This work was supported by Toyota Motor Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Babenko, B., Member, S., Yang, M.H., Member, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)

    Article  Google Scholar 

  2. Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: ICCV (2019)

    Google Scholar 

  3. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. Eurasip J. Image Video Process. 2008 (2008). https://doi.org/10.1155/2008/246309

  4. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: ICIP, pp. 3464–3468. IEEE (2016)

    Google Scholar 

  5. Chandra, R., Bhattacharya, U., Randhavane, T., Bera, A., Manocha, D.: RoadTrack: realtime tracking of road agents in dense and heterogeneous environments. In: ICRA, pp. 1270–1277 (2020)

    Google Scholar 

  6. Ebert, J., Gumpp, T., Münzner, S., Matskevych, A., Condurache, A.P., Gläser, C.: Deep radar sensor models for accurate and robust object tracking. In: ITSC, pp. 8–13 (2020)

    Google Scholar 

  7. Engel, N., Hoermann, S., Henzler, P., Dietmayer, K.: Deep object tracking on dynamic occupancy grid maps using RNNs. In: ITSC (2018)

    Google Scholar 

  8. Erkent, O., Laugier, C.: Semantic segmentation with unsupervised domain adaptation under varying weather conditions for autonomous vehicles. IEEE Robot. Autom. Lett. 5(2), 3580–3587 (2020). https://doi.org/10.1109/LRA.2020.2978666

    Article  Google Scholar 

  9. Erkent, O., Wolf, C., Laugier, C., Gonzalez, D., Cano, V.: Semantic grid estimation with a hybrid Bayesian and deep neural network approach. In: IEEE IROS, pp. 888–895 (2018)

    Google Scholar 

  10. Feichtenhofer, C., Pinz, A., Zisserman, A.: Detect to track and track to detect. In: ECCV, vol. 14, pp. 709–736 (2017)

    Google Scholar 

  11. Frossard, D., Urtasun, R.: End-to-end learning of multi-sensor 3D tracking by detection. In: ICRA, pp. 635–642 (2018)

    Google Scholar 

  12. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  13. González, D.S., Paigwar, A., Erkent, Ö., Dibangoye, J., Laugier, C.: Leveraging dynamic occupancy grids for 3D object detection in point clouds. In: 16th IEEE International Conference on Control, Automation, Robotics and Vision (ICARCV) (2020)

    Google Scholar 

  14. Guo, X., Huang, K.: 3D object detection and tracking on streaming data. In: ICRA, pp. 8376–8382 (2020)

    Google Scholar 

  15. Khalkhali, M.B., Vahedian, A., Yazdi, H.S.: Vehicle tracking with Kalman filter using online situation assessment. Robot. Auton. Syst. 131, 103596 (2020)

    Article  Google Scholar 

  16. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: CVPR, pp. 12697–12705 (2019)

    Google Scholar 

  17. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)

    Google Scholar 

  18. Luo, W., Yang, B., Urtasun, R.: Fast and Furious: real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net. In. CVPR (2018)

    Google Scholar 

  19. Maksai, A., Fua, P.: Eliminating exposure bias and loss-evaluation mismatch in multiple object tracking. In: CVPR, pp. 4639–4648 (2019)

    Google Scholar 

  20. Miah, M., Pepin, J., Saunier, N., Bilodeau, G.A.: An empirical analysis of visual features for multiple object tracking in urban scenes. In: ICPR (2020)

    Google Scholar 

  21. Pöschmann, J., Pfeifer, T., Protzel, P.: Factor graph based 3D multi-object tracking in point clouds. In: IROS, pp. 10343–10350 (2020)

    Google Scholar 

  22. Rummelhard, L., Nègre, A., Laugier, C.: Conditional Monte Carlo dense occupancy tracker. In: ITSC, pp. 2485–2490. IEEE (2015)

    Google Scholar 

  23. Sadeghian, A., Alahi, A., Savarese, S.: Tracking the untrackable: learning to track multiple cues with long-term dependencies. In: ICCV (2017)

    Google Scholar 

  24. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: CVPR, pp. 4510–4520 (2018)

    Google Scholar 

  25. Shi, J., Tomasi, C.: Good features. In: CVPR, pp. 593–600 (1994)

    Google Scholar 

  26. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: CVPR, pp. 770–779 (2019)

    Google Scholar 

  27. Weng, X., Wang, J., Held, D., Kitani, K.: AB3DMOT: a baseline for 3D multi-object tracking and new evaluation metrics. In: IROS, pp. 10359–10366 (2020)

    Google Scholar 

  28. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: ICIP, pp. 3645–3650 (2017)

    Google Scholar 

  29. Yin, T., Zhou, X., Krähenbühl, P.: Center-based 3D object detection and tracking. In: CVPR (2021)

    Google Scholar 

  30. Zhou, X., Koltun, V., Krähenbühl, P.: Tracking objects as points. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 474–490. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_28

    Chapter  Google Scholar 

Download references

Acknowledgment

We thank Gabriel Othmezouri, Jérôme Lussereau and Lukas Rummelhard for their assistance in this study. Parts of the experiments presented in this paper were carried out using the Grid’5000 testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgür Erkent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Erkent, Ö., Gonzalez, D.S., Paigwar, A., Laugier, C. (2021). GridTrack: Detection and Tracking of Multiple Objects in Dynamic Occupancy Grids. In: Vincze, M., Patten, T., Christensen, H.I., Nalpantidis, L., Liu, M. (eds) Computer Vision Systems. ICVS 2021. Lecture Notes in Computer Science(), vol 12899. Springer, Cham. https://doi.org/10.1007/978-3-030-87156-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87156-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87155-0

  • Online ISBN: 978-3-030-87156-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics