Abstract
Multiple Object Tracking is an important task for autonomous vehicles. However, it gets difficult to track objects when it is hard to detect them due to occlusion or distance to the sensors. We propose a method, “GridTrack”, to overcome this difficulty. We fuse a dynamic occupancy grid map (DOGMa) with an object detector. DOGMa is obtained by applying a Bayesian filter on raw sensor data. This improves the tracking of the partially observed/unobserved objects with the help of the Bayesian filter on raw data, which has a powerful prediction capability. We develop a network to track the objects on the grid and fuse information from previous detections in this network. The experiments show that the multi-object tracking accuracy is high with the usage of the proposed method.
This work was supported by Toyota Motor Europe.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Babenko, B., Member, S., Yang, M.H., Member, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)
Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: ICCV (2019)
Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. Eurasip J. Image Video Process. 2008 (2008). https://doi.org/10.1155/2008/246309
Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: ICIP, pp. 3464–3468. IEEE (2016)
Chandra, R., Bhattacharya, U., Randhavane, T., Bera, A., Manocha, D.: RoadTrack: realtime tracking of road agents in dense and heterogeneous environments. In: ICRA, pp. 1270–1277 (2020)
Ebert, J., Gumpp, T., Münzner, S., Matskevych, A., Condurache, A.P., Gläser, C.: Deep radar sensor models for accurate and robust object tracking. In: ITSC, pp. 8–13 (2020)
Engel, N., Hoermann, S., Henzler, P., Dietmayer, K.: Deep object tracking on dynamic occupancy grid maps using RNNs. In: ITSC (2018)
Erkent, O., Laugier, C.: Semantic segmentation with unsupervised domain adaptation under varying weather conditions for autonomous vehicles. IEEE Robot. Autom. Lett. 5(2), 3580–3587 (2020). https://doi.org/10.1109/LRA.2020.2978666
Erkent, O., Wolf, C., Laugier, C., Gonzalez, D., Cano, V.: Semantic grid estimation with a hybrid Bayesian and deep neural network approach. In: IEEE IROS, pp. 888–895 (2018)
Feichtenhofer, C., Pinz, A., Zisserman, A.: Detect to track and track to detect. In: ECCV, vol. 14, pp. 709–736 (2017)
Frossard, D., Urtasun, R.: End-to-end learning of multi-sensor 3D tracking by detection. In: ICRA, pp. 635–642 (2018)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR, pp. 3354–3361. IEEE (2012)
González, D.S., Paigwar, A., Erkent, Ö., Dibangoye, J., Laugier, C.: Leveraging dynamic occupancy grids for 3D object detection in point clouds. In: 16th IEEE International Conference on Control, Automation, Robotics and Vision (ICARCV) (2020)
Guo, X., Huang, K.: 3D object detection and tracking on streaming data. In: ICRA, pp. 8376–8382 (2020)
Khalkhali, M.B., Vahedian, A., Yazdi, H.S.: Vehicle tracking with Kalman filter using online situation assessment. Robot. Auton. Syst. 131, 103596 (2020)
Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: CVPR, pp. 12697–12705 (2019)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)
Luo, W., Yang, B., Urtasun, R.: Fast and Furious: real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net. In. CVPR (2018)
Maksai, A., Fua, P.: Eliminating exposure bias and loss-evaluation mismatch in multiple object tracking. In: CVPR, pp. 4639–4648 (2019)
Miah, M., Pepin, J., Saunier, N., Bilodeau, G.A.: An empirical analysis of visual features for multiple object tracking in urban scenes. In: ICPR (2020)
Pöschmann, J., Pfeifer, T., Protzel, P.: Factor graph based 3D multi-object tracking in point clouds. In: IROS, pp. 10343–10350 (2020)
Rummelhard, L., Nègre, A., Laugier, C.: Conditional Monte Carlo dense occupancy tracker. In: ITSC, pp. 2485–2490. IEEE (2015)
Sadeghian, A., Alahi, A., Savarese, S.: Tracking the untrackable: learning to track multiple cues with long-term dependencies. In: ICCV (2017)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: CVPR, pp. 4510–4520 (2018)
Shi, J., Tomasi, C.: Good features. In: CVPR, pp. 593–600 (1994)
Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: CVPR, pp. 770–779 (2019)
Weng, X., Wang, J., Held, D., Kitani, K.: AB3DMOT: a baseline for 3D multi-object tracking and new evaluation metrics. In: IROS, pp. 10359–10366 (2020)
Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: ICIP, pp. 3645–3650 (2017)
Yin, T., Zhou, X., Krähenbühl, P.: Center-based 3D object detection and tracking. In: CVPR (2021)
Zhou, X., Koltun, V., Krähenbühl, P.: Tracking objects as points. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 474–490. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_28
Acknowledgment
We thank Gabriel Othmezouri, Jérôme Lussereau and Lukas Rummelhard for their assistance in this study. Parts of the experiments presented in this paper were carried out using the Grid’5000 testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Erkent, Ö., Gonzalez, D.S., Paigwar, A., Laugier, C. (2021). GridTrack: Detection and Tracking of Multiple Objects in Dynamic Occupancy Grids. In: Vincze, M., Patten, T., Christensen, H.I., Nalpantidis, L., Liu, M. (eds) Computer Vision Systems. ICVS 2021. Lecture Notes in Computer Science(), vol 12899. Springer, Cham. https://doi.org/10.1007/978-3-030-87156-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-87156-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87155-0
Online ISBN: 978-3-030-87156-7
eBook Packages: Computer ScienceComputer Science (R0)