Abstract
The performance of deep segmentation models often degrades due to distribution shifts in image intensities between the training and test data sets. This is particularly pronounced in multi-centre studies involving data acquired using multi-vendor scanners, with variations in acquisition protocols. It is challenging to address this degradation because the shift is often not known a priori and hence difficult to model. We propose a novel framework to ensure robust segmentation in the presence of such distribution shifts. Our contribution is three-fold. First, inspired by the spirit of curriculum learning, we design a novel style curriculum to train the segmentation models using an easy-to-hard mode. A style transfer model with style fusion is employed to generate the curriculum samples. Gradually focusing on complex and adversarial style samples can significantly boost the robustness of the models. Second, instead of subjectively defining the curriculum complexity, we adopt an automated gradient manipulation method to control the hard and adversarial sample generation process. Third, we propose the Local Gradient Sign strategy to aggregate the gradient locally and stabilise training during gradient manipulation. The proposed framework can generalise to unknown distribution without using any target data. Extensive experiments on the public M&Ms Challenge dataset demonstrate that our proposed framework can generalise deep models well to unknown distributions and achieve significant improvements in segmentation accuracy.
Z. Liu and V. Manh—Contribute equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48 (2009)
Cai, Q.Z., Liu, C., Song, D.: Curriculum adversarial training. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 3740–3747 (2018)
Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: The m&ms challenge. IEEE Trans. Med. Imaging (2021)
Chen, C., et al.: Unsupervised multi-modal style transfer for cardiac MR segmentation. In: Pop, M., et al. (eds.) STACOM 2019. LNCS, vol. 12009, pp. 209–219. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39074-7_22
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)
Hacohen, G., Weinshall, D.: On the power of curriculum learning in training deep networks. In: International Conference on Machine Learning, pp. 2535–2544. PMLR (2019)
Huang, E., Gupta, S.: Style is a distribution of features. arXiv preprint arXiv:2007.13010 (2020)
Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11
Li, B., Wang, S., Jana, S., Carin, L.: Towards understanding fast adversarial training. arXiv preprint arXiv:2006.03089 (2020)
Li, Y., Wang, N., Liu, J., Hou, X.: Demystifying neural style transfer. arXiv preprint arXiv:1701.01036 (2017)
Liu, S., et al.: Deep learning in medical ultrasound analysis: a review. Engineering 5(2), 261–275 (2019)
Liu, Z., et al.: Remove appearance shift for ultrasound image segmentation via fast and universal style transfer. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1824–1828. IEEE (2020)
Liu, Z., et al.: Open compound domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12406–12415 (2020)
Ma, C., Ji, Z., Gao, M.: Neural style transfer improves 3D cardiovascular MR image segmentation on inconsistent data. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 128–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_15
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Volpi, R., Namkoong, H., Sener, O., Duchi, J., Murino, V., Savarese, S.: Generalizing to unseen domains via adversarial data augmentation. arXiv preprint arXiv:1805.12018 (2018)
Yan, W., et al.: The domain shift problem of medical image segmentation and vendor-adaptation by Unet-GAN. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 623–631. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_69
Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)
Zhang, Y., David, P., Gong, B.: Curriculum domain adaptation for semantic segmentation of urban scenes. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2020–2030 (2017)
Zhang, Z., Yang, L., Zheng, Y.: Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In: Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition, pp. 9242–9251 (2018)
Acknowledgement
This work was supported by the National Key R&D Program of China (No. 2019YFC0118300), Shenzhen Peacock Plan (No. KQTD2016053112051497, KQJSCX20180328095606003), Royal Academy of Engineering under the RAEng Chair in Emerging Technologies (CiET1919/19) scheme, EPSRC TUSCA (EP/V04799X/1), the Royal Society CROSSLINK Exchange Programme (IES/NSFC/201380), European Union’s Horizon 2020 research and innovation program under grant agreement number 825903 (euCanSHare project), Spanish Ministry of Science, Innovation and Universities under grant agreement RTI2018-099898-B-I00.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Z. et al. (2021). Style Curriculum Learning for Robust Medical Image Segmentation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-87193-2_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87192-5
Online ISBN: 978-3-030-87193-2
eBook Packages: Computer ScienceComputer Science (R0)