Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Style Curriculum Learning for Robust Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

The performance of deep segmentation models often degrades due to distribution shifts in image intensities between the training and test data sets. This is particularly pronounced in multi-centre studies involving data acquired using multi-vendor scanners, with variations in acquisition protocols. It is challenging to address this degradation because the shift is often not known a priori and hence difficult to model. We propose a novel framework to ensure robust segmentation in the presence of such distribution shifts. Our contribution is three-fold. First, inspired by the spirit of curriculum learning, we design a novel style curriculum to train the segmentation models using an easy-to-hard mode. A style transfer model with style fusion is employed to generate the curriculum samples. Gradually focusing on complex and adversarial style samples can significantly boost the robustness of the models. Second, instead of subjectively defining the curriculum complexity, we adopt an automated gradient manipulation method to control the hard and adversarial sample generation process. Third, we propose the Local Gradient Sign strategy to aggregate the gradient locally and stabilise training during gradient manipulation. The proposed framework can generalise to unknown distribution without using any target data. Extensive experiments on the public M&Ms Challenge dataset demonstrate that our proposed framework can generalise deep models well to unknown distributions and achieve significant improvements in segmentation accuracy.

Z. Liu and V. Manh—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48 (2009)

    Google Scholar 

  2. Cai, Q.Z., Liu, C., Song, D.: Curriculum adversarial training. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 3740–3747 (2018)

    Google Scholar 

  3. Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: The m&ms challenge. IEEE Trans. Med. Imaging (2021)

    Google Scholar 

  4. Chen, C., et al.: Unsupervised multi-modal style transfer for cardiac MR segmentation. In: Pop, M., et al. (eds.) STACOM 2019. LNCS, vol. 12009, pp. 209–219. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39074-7_22

    Chapter  Google Scholar 

  5. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  6. Hacohen, G., Weinshall, D.: On the power of curriculum learning in training deep networks. In: International Conference on Machine Learning, pp. 2535–2544. PMLR (2019)

    Google Scholar 

  7. Huang, E., Gupta, S.: Style is a distribution of features. arXiv preprint arXiv:2007.13010 (2020)

  8. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11

    Chapter  Google Scholar 

  9. Li, B., Wang, S., Jana, S., Carin, L.: Towards understanding fast adversarial training. arXiv preprint arXiv:2006.03089 (2020)

  10. Li, Y., Wang, N., Liu, J., Hou, X.: Demystifying neural style transfer. arXiv preprint arXiv:1701.01036 (2017)

  11. Liu, S., et al.: Deep learning in medical ultrasound analysis: a review. Engineering 5(2), 261–275 (2019)

    Article  Google Scholar 

  12. Liu, Z., et al.: Remove appearance shift for ultrasound image segmentation via fast and universal style transfer. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1824–1828. IEEE (2020)

    Google Scholar 

  13. Liu, Z., et al.: Open compound domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12406–12415 (2020)

    Google Scholar 

  14. Ma, C., Ji, Z., Gao, M.: Neural style transfer improves 3D cardiovascular MR image segmentation on inconsistent data. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 128–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_15

    Chapter  Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Volpi, R., Namkoong, H., Sener, O., Duchi, J., Murino, V., Savarese, S.: Generalizing to unseen domains via adversarial data augmentation. arXiv preprint arXiv:1805.12018 (2018)

  17. Yan, W., et al.: The domain shift problem of medical image segmentation and vendor-adaptation by Unet-GAN. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 623–631. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_69

    Chapter  Google Scholar 

  18. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  19. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  20. Zhang, Y., David, P., Gong, B.: Curriculum domain adaptation for semantic segmentation of urban scenes. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2020–2030 (2017)

    Google Scholar 

  21. Zhang, Z., Yang, L., Zheng, Y.: Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In: Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition, pp. 9242–9251 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key R&D Program of China (No. 2019YFC0118300), Shenzhen Peacock Plan (No. KQTD2016053112051497, KQJSCX20180328095606003), Royal Academy of Engineering under the RAEng Chair in Emerging Technologies (CiET1919/19) scheme, EPSRC TUSCA (EP/V04799X/1), the Royal Society CROSSLINK Exchange Programme (IES/NSFC/201380), European Union’s Horizon 2020 research and innovation program under grant agreement number 825903 (euCanSHare project), Spanish Ministry of Science, Innovation and Universities under grant agreement RTI2018-099898-B-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Ni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z. et al. (2021). Style Curriculum Learning for Robust Medical Image Segmentation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics