Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hybrid Graph Convolutional Neural Networks for Landmark-Based Anatomical Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12901))

Abstract

In this work we address the problem of landmark-based segmentation for anatomical structures. We propose HybridGNet, an encoder-decoder neural architecture which combines standard convolutions for image feature encoding, with graph convolutional neural networks to decode plausible representations of anatomical structures. We benchmark the proposed architecture considering other standard landmark and pixel-based models for anatomical segmentation in chest x-ray images, and found that HybridGNet is more robust to image occlusions. We also show that it can be used to construct landmark-based segmentations from pixel level annotations. Our experimental results suggest that Hybrid-Net produces accurate and anatomically plausible landmark-based segmentations, by naturally incorporating shape constraints within the decoding process via spectral convolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvén, J., Kahl, F., Landgren, M., Larsson, V., Ulén, J.: Shape-aware multi-atlas segmentation. In: 2016 23rd International Conference on Pattern Recognition (Icpr), pp. 1101–1106. IEEE (2016)

    Google Scholar 

  2. Alvén, J., Kahl, F., Landgren, M., Larsson, V., Ulén, J., Enqvist, O.: Shape-aware label fusion for multi-atlas frameworks. Pattern Recogn. Lett. 124, 109–117 (2019)

    Article  Google Scholar 

  3. Bhalodia, R., Elhabian, S.Y., Kavan, L., Whitaker, R.T.: DeepSSM: a deep learning framework for statistical shape modeling from raw images. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 244–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_23

    Chapter  Google Scholar 

  4. Boussaid, H., Kokkinos, I., Paragios, N.: Discriminative learning of deformable contour models. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 624–628. IEEE (2014)

    Google Scholar 

  5. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  6. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  7. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054760

    Chapter  Google Scholar 

  8. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Training models of shape from sets of examples. In: BMVC92, pp. 9–18. Springer, Heidelberg (1992). https://doi.org/10.1007/978-1-4471-3201-1_2

  9. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. arXiv preprint arXiv:1606.09375 (2016)

  10. Foti, S., Foti, S., et al.: Intraoperative liver surface completion with graph convolutional VAE. In: Sudre, C.H., et al. (eds.) UNSURE/GRAIL -2020. LNCS, vol. 12443, pp. 198–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60365-6_19

    Chapter  Google Scholar 

  11. Frangi, A.F., Niessen, W.J., Rueckert, D., Schnabel, J.A.: Automatic 3D ASM construction via atlas-based landmarking and volumetric elastic registration. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 78–91. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45729-1_7

    Chapter  Google Scholar 

  12. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  13. van Ginneken, B., Stegmann, M., Loog, M.: Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med. Image Anal. 10(1), 19–40 (2006)

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  15. Heimann, T., Meinzer, H.P.: Statistical shape models for 3d medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  16. Heitz, G., Rohlfing, T., Maurer Jr, C.R.: Automatic generation of shape models using nonrigid registration with a single segmented template mesh. In: VMV, pp. 73–80 (2004)

    Google Scholar 

  17. Jurdia, R.E., Petitjean, C., Honeine, P., Cheplygina, V., Abdallah, F.: High-level prior-based loss functions for medical image segmentation: A survey. arXiv preprint arXiv:2011.08018 (2020)

  18. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  19. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  20. Larrazabal, A.J., Martinez, C., Ferrante, E.: Anatomical priors for image segmentation via post-processing with denoising autoencoders. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 585–593. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_65

    Chapter  Google Scholar 

  21. Marstal, K., Berendsen, F., Staring, M., Klein, S.: Simpleelastix: a user-friendly, multi-lingual library for medical image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 134–142 (2016)

    Google Scholar 

  22. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  23. Milletari, F., Rothberg, A., Jia, J., Sofka, M.: Integrating statistical prior knowledge into convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 161–168. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_19

    Chapter  Google Scholar 

  24. Oktay, O., et al.: Anatomically constrained neural networks (acnns): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2017)

    Article  Google Scholar 

  25. Paulsen, R., Larsen, R., Nielsen, C., Laugesen, S., Ersbøll, B.: Building and testing a statistical shape model of the human ear canal. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 373–380. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45787-9_47

    Chapter  MATH  Google Scholar 

  26. Ranjan, A., Bolkart, T., Sanyal, S., Black, M.J.: Generating 3d faces using convolutional mesh autoencoders. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 704–720 (2018)

    Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  28. Shakeri, M., et al.: Sub-cortical brain structure segmentation using f-cnn’s. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 269–272. IEEE (2016)

    Google Scholar 

  29. l Shiraishi, J., et al.: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 174(1), 71–74 (2000)

    Google Scholar 

  30. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)

    Article  Google Scholar 

  31. Sozou, P.D., Cootes, T.F., Taylor, C.J., Di Mauro, E., Lanitis, A.: Non-linear point distribution modelling using a multi-layer perceptron. Image Vision Comput. 15(6), 457–463 (1997)

    Article  Google Scholar 

  32. Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vision Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from ANPCyT (PICT 2018-3907 and 3384), UNL (CAI+D 50220140100-084LI, 50620190100-145LI and 115LI) and The Royal Society (IES/R2/202165). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás Gaggion .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1098 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaggion, N., Mansilla, L., Milone, D.H., Ferrante, E. (2021). Hybrid Graph Convolutional Neural Networks for Landmark-Based Anatomical Segmentation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics