Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learnable Oriented-Derivative Network for Polyp Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12901))

Abstract

Gastrointestinal polyps are the main cause of colorectal cancer. Given the polyp variations in terms of size, color, texture and poor optical conditions brought by endoscopy, polyp segmentation is still a challenging problem. In this paper, we propose a Learnable Oriented-Derivative Network (LOD-Net) to refine the accuracy of boundary predictions for polyp segmentation. Specifically, it firstly calculates eight oriented derivatives at each pixel for a polyp. It then selects those pixels with large oriented-derivative values to constitute a candidate border region of a polyp. It finally refines boundary prediction by fusing border region features and also those high-level semantic features calculated by a backbone network. Extensive experiments and ablation studies show that the proposed LOD-Net achieves superior performance compared to the state-of-the-art methods by a significant margin on publicly available datasets, including CVC-ClinicDB, CVC-ColonDB, Kvasir, ETIS, and EndoScene. For examples, for the dataset Kvasir, we achieve an mIoU of 88.5% vs. 82.9% by PraNet; for the dataset ETIS, we achieve an mIoU of 88.4% vs. 72.7% by PraNet. The code is available at https://github.com/midsdsy/LOD-Net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akbari, M., et al.: Polyp segmentation in colonoscopy images using fully convolutional network. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 69–72. IEEE (2018)

    Google Scholar 

  2. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Computerized Med. Imaging Graph. 43, 99–111 (2015)

    Google Scholar 

  3. Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45(9), 3166–3182 (2012)

    Article  Google Scholar 

  4. Cheng, F., et al.: Learning directional feature maps for cardiac MRI segmentation. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 108–117. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_11

    Chapter  Google Scholar 

  5. Cheng, T., Wang, X., Huang, L., Liu, W.: Boundary-preserving mask R-CNN. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 660–676. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_39

    Chapter  Google Scholar 

  6. Contributors, M.: MMSegmentation: openmmlab semantic segmentation toolbox and benchmark (2020). https://github.com/open-mmlab/mmsegmentation

  7. Dai, J., et al.: Deformable convolutional networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 764–773. IEEE Computer Society (2017)

    Google Scholar 

  8. Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

    Chapter  Google Scholar 

  9. Fang, Y., Chen, C., Yuan, Y., Tong, K.: Selective feature aggregation network with area-boundary constraints for polyp segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 302–310. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_34

    Chapter  Google Scholar 

  10. Ganster, H., Pinz, P., Rohrer, R., Wildling, E., Binder, M., Kittler, H.: Automated melanoma recognition. IEEE Trans. Med. Imaging 20(3), 233–239 (2001). https://doi.org/10.1109/42.918473

    Article  Google Scholar 

  11. Haggar, F.A., Boushey, R.P.: Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clinics Colon Rectal Surgery 22(4), 191 (2009)

    Article  Google Scholar 

  12. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask r-cnn. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 386–397 (2018)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE Computer Society (2016)

    Google Scholar 

  14. He, Y., Xie, F.: Automatic skin lesion segmentation based on texture analysis and supervised learning. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7725, pp. 330–341. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37444-9_26

    Chapter  Google Scholar 

  15. Huang, C.H., Wu, H.Y., Lin, Y.L.: Hardnet-mseg: a simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps. arXiv preprint arXiv:2101.07172 (2021)

  16. Jha, D., et al.: Resunet++: an advanced architecture for medical image segmentation. In: 2019 IEEE International Symposium on Multimedia (ISM), pp. 225–2255. IEEE (2019)

    Google Scholar 

  17. Kang, J., Gwak, J.: Ensemble of instance segmentation models for polyp segmentation in colonoscopy images. IEEE Access 7, 26440–26447 (2019)

    Article  Google Scholar 

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  19. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944. IEEE Computer Society (2017)

    Google Scholar 

  20. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  21. Pogorelov, K., et al.: Kvasir: a multi-class image dataset for computer aided gastrointestinal disease detection. In: Proceedings of the 8th ACM on Multimedia Systems Conference, pp. 164–169 (2017)

    Google Scholar 

  22. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Siegel, R.L., et al.: Colorectal cancer statistics. CA: a Cancer J. Clinicians 70(3), 145–164 (2020)

    Google Scholar 

  25. Vázquez, D., et al.: A benchmark for endoluminal scene segmentation of colonoscopy images. Journal of healthcare engineering (2017)

    Google Scholar 

  26. Wang, R., Chen, S., Ji, C., Fan, J., Li, Y.: Boundary-aware context neural network for medical image segmentation. arXiv preprint arXiv:2005.00966 (2020)

  27. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  28. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgment

This work is supported by the Nature Science Foundation of China (No. 61972217, 62081360152, 62006133, 32071459), Guangdong Basic and Applied Basic Research Foundation (No. 2019B1515120049) and Guangdong Science and Technology Department (No. 2020B1111340056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, M., Kong, Z., Song, G., Tian, Y., Liang, Y., Chen, J. (2021). Learnable Oriented-Derivative Network for Polyp Segmentation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics