Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Spherical Convolutional Neural Network for White Matter Structure Imaging via dMRI

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Diffusion Magnetic Resonance Imaging (dMRI) is a powerful non-invasive and in-vivo imaging modality for probing brain white matter structure. Convolutional neural networks (CNNs) have been shown to be a powerful tool for many computer vision problems where the signals are acquired on a regular grid and where translational invariance is important. However, as we are considering dMRI signals that are acquired on a sphere, rotational invariance, rather than translational, is desired. In this work, we propose a spherical CNN model with fully spectral domain convolutional and non-linear layers. It provides rotational invariance and is adapted to the real nature of dMRI signals and uniform random distribution of sampling points. The proposed model is positively evaluated on the problem of estimation of neurite orientation dispersion and density imaging (NODDI) parameters on the data from Human Connectome Project (HCP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Le Bihan, D., et al.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging: an Off. J. Int. Soc. Magn. Reson. Med. 13(4), 534-546 (2001)

    Google Scholar 

  2. Behrens, T.E.J., et al.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med.: An Off. J. Int. Soc. Magn. Reson. Med. 50(5), 1077–1088 (2003)

    Google Scholar 

  3. Assaf, Y., Basser, P.J.: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage 27(1), 48–58 (2005)

    Article  Google Scholar 

  4. Assaf, Y., et al.: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med.: An Off. J. Int. Soc. Magn. Reson. Med. 59(6), 1347–1354 (2008)

    Google Scholar 

  5. Zhang, H., et al.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)

    Article  Google Scholar 

  6. Panagiotaki, E., et al.: Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 74(7), 1902–1912 (2014)

    Article  Google Scholar 

  7. De Santis, S., et al.: Early axonal damage in normal appearing white matter in multiple sclerosis: novel insights from multi-shell diffusion MRI. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2017)

    Google Scholar 

  8. Schneider, T., et al.: Sensitivity of multi-shell NODDI to multiple sclerosis white matter changes: a pilot study. Funct. Neurol. 32(2), 97 (2017)

    Article  Google Scholar 

  9. Broad, R.J., et al.: Neurite orientation and dispersion density imaging (NODDI) detects cortical and corticospinal tract degeneration in ALS. J. Neurol. Neurosurg. Psychiatry 90(4), 404–411 (2019)

    Article  Google Scholar 

  10. Golkov, V., et al.: Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans. Med. Imaging 35(5), 1344–1351 (2016)

    Article  Google Scholar 

  11. Ye, Chuyang: Estimation of tissue microstructure using a deep network inspired by a sparse reconstruction framework. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 466–477. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_37

    Chapter  Google Scholar 

  12. Ye, C., Li, X., Chen, J.: A deep network for tissue microstructure estimation using modified LSTM units. Med. Image Anal. 55, 49–64 (2019)

    Article  Google Scholar 

  13. Faiyaz, A., et al.: DLpN: Single-Shell NODDI Using Deep Learner Estimated Isotropic Volume Fraction. arXiv preprint arXiv:2102.02772 (2021)

  14. Banerjee, M., et al.: DMR-CNN: a CNN tailored for DMR scans with applications to PD classification. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE (2019)

    Google Scholar 

  15. Müller, P., et al.: Rotation-Equivariant Deep Learning for Diffusion MRI. arXiv preprint arXiv:2102.06942 (2021)

  16. Ning, L., et al.: Muti-shell Diffusion MRI harmonisation and enhancement challenge (MUSHAC): progress and results. In: Bonet-Carne, E., et al. (eds.) MICCAI 2019. MV, pp. 217–224. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05831-9_18

    Chapter  Google Scholar 

  17. Lin, Z., et al.: Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network. Med. Phys. 46(7), 3101–3116 (2019)

    Article  Google Scholar 

  18. Koppers, S., Merhof, D.: Direct Estimation of Fiber Orientations using Deep Learning in Diffusion Imaging. International Workshop on Machine Learning in Medical Imaging, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47157-0_7

    Book  Google Scholar 

  19. Sedlar, S., et al.: Diffusion MRI fiber orientation distribution function estimation using voxel-wise spherical U-net. In: Computational Diffusion MRI, MICCAI Workshop (2020)

    Google Scholar 

  20. Elaldi, A., et al.: Equivariant Spherical Deconvolution: Learning Sparse Orientation Distribution Functions from Spherical Data. arXiv preprint arXiv:2102.09462 (2021)

  21. Cohen, T.S., Geiger, M., Köhler, J., Welling, M.: Spherical CNNs. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  22. Esteves, C., et al.: Learning so (3) equivariant representations with spherical CNNS. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  23. Kondor, R., Lin, Z., Trivedi, S.: Clebsch-gordan nets: a fully fourier space spherical convolutional neural network. Adv. Neural. Inf. Process. Syst. 31, 10117–10126 (2018)

    Google Scholar 

  24. Sugiura, M.: Unitary Representations and Harmonic Analysis: an Introduction. Elsevier, Amsterdam (1990)

    MATH  Google Scholar 

  25. Homeier, H.H.H., Steinborn, E.O.: Some properties of the coupling coefficients of real spherical harmonics and their relation to Gaunt coefficients. J. Mol. Struct.: THEOCHEM 368, 31–37 (1996)

    Google Scholar 

  26. Rose, M.E.: Elementary Theory of Angular Momentum. Courier Corporation (1995)

    Google Scholar 

  27. Driscoll, J.R., Healy, D.M.: Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15(2), 202–250 (1994)

    Article  MathSciNet  Google Scholar 

  28. Caruyer, E., et al.: Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn. Reson. Med. 69(6), 1534–1540 (2013)

    Article  Google Scholar 

  29. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  30. Fick, R.H.J., Wassermann, D., Deriche, R.: The dmipy toolbox: Diffusion MRI multi-compartment modeling and microstructure recovery made easy. Front. Neuroinformatics 13, 64 (2019)

    Article  Google Scholar 

  31. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  32. Tournier, J.-D., et al.: MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage 202, 116137 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the ERC under the European Union’s Horizon 2020 research and innovation program (ERC Advanced Grant agreement No 694665:CoBCoM : Computational Brain Connectivity Mapping).

This work has been partly supported by the French government, through the 3IA Côte d’Azur Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA-0002.

Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

The authors are grateful to Inria Sophia Antipolis - Méditerranée https://wiki.inria.fr/ClustersSophia/Usage_policy“Nef” computation cluster for providing resources and support.

The authors are grateful to the OPAL infrastructure from Université Côte d’Azur for providing resources and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Sedlar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sedlar, S., Alimi, A., Papadopoulo, T., Deriche, R., Deslauriers-Gauthier, S. (2021). A Spherical Convolutional Neural Network for White Matter Structure Imaging via dMRI. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87199-4_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87198-7

  • Online ISBN: 978-3-030-87199-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics