Abstract
Our work proposes neural network design choices that set the state-of-the-art on a challenging public benchmark on cataract surgery, CaDIS. Our methodology achieves strong performance across three semantic segmentation tasks with increasingly granular surgical tool class sets by effectively handling class imbalance, an inherent challenge in any surgical video. We consider and evaluate two conceptually simple data oversampling methods as well as different loss functions. We show significant performance gains across network architectures and tasks especially on the rarest tool classes, thereby presenting an approach for achieving high performance when imbalanced granular datasets are considered. Our code and trained models are available at https://github.com/RViMLab/MICCAI2021_Cataract_semantic_segmentation and qualitative results on unseen surgical video can be found at https://youtu.be/twVIPUj1WZM.
T. Pissas and C. S. Ravasio—Contributed equally.
L. Da Cruz and C. Bergeles—Contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blindness and vision impairment. https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment. Accessed 1 Mar 2021
Al Hajj, H., et al.: Cataracts: challenge on automatic tool annotation for cataract surgery. Med. Image Anal. 52, 24–41 (2019)
Berger, L., Eoin, H., Cardoso, M.J., Ourselin, S.: An adaptive sampling scheme to efficiently train fully convolutional networks for semantic segmentation. In: Nixon, M., Mahmoodi, S., Zwiggelaar, R. (eds.) MIUA 2018. CCIS, vol. 894, pp. 277–286. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95921-4_26
Berman, M., Triki, A.R., Blaschko, M.B.: The lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4413–4421 (2018)
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)
Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)
Fox, M., Taschwer, M., Schoeffmann, K.: Pixel-based tool segmentation in cataract surgery videos with mask R-CNN. In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), pp. 565–568. IEEE (2020)
Grammatikopoulou, M., et al.: Cadis: cataract dataset for surgical RGB-image segmentation. Med. Image Anal. 71,(2021). https://doi.org/10.1016/j.media.2021.102053
Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5356–5364 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Karpathy, A.: A recipe for training neural networks (2019). http://karpathy.github.io/2019/04/25/recipe/
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015 (2015)
Maier-Hein, L., et al.: Surgical data science-from concepts to clinical translation. arXiv preprint arXiv:2011.02284 (2020)
Marcel, S., Rodriguez, Y.: Torchvision the machine-vision package of torch. In: Proceedings of the 18th ACM international conference on Multimedia, pp. 1485–1488 (2010)
Mishra, P., Sarawadekar, K.: Polynomial learning rate policy with warm restart for deep neural network. In: TENCON 2019–2019 IEEE Region 10 Conference (TENCON), pp. 2087–2092. IEEE (2019)
Morita, S., Tabuchi, H., Masumoto, H., Yamauchi, T., Kamiura, N.: Real-time extraction of important surgical phases in cataract surgery videos. Sci. Rep. 9(1), 1–8 (2019)
Ni, Z.-L., et al.: RAUNet: residual attention U-Net for semantic segmentation of cataract surgical instruments. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS, vol. 11954, pp. 139–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36711-4_13
Padoy, N., Blum, T., Ahmadi, S.A., Feussner, H., Berger, M.O., Navab, N.: Statistical modeling and recognition of surgical workflow. Med. Image Anal. 16(3), 632–641 (2012)
Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016
Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)
Wang, W., Yan, W., Fotis, K., Prasad, N.M., Lansingh, V.C., Taylor, H.R., Finger, R.P., Facciolo, D., He, M.: Cataract surgical rate and socioeconomics: a global study. Invest. Ophthalmol. Vis. Sci. 57(14), 5872–5881 (2016)
Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 418–434 (2018)
Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)
Yu, F., et al.: Assessment of automated identification of phases in videos of cataract surgery using machine learning and deep learning techniques. JAMA Netw. Open 2(4), e191860–e191860 (2019)
Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. arXiv preprint arXiv:1909.11065 (2019)
Zang, D., Bian, G.-B., Wang, Y., Li, Z.: An extremely fast and precise convolutional neural network for recognition and localization of cataract surgical tools. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 56–64. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_7
Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
Zhou, B., et al.: Semantic understanding of scenes through the ade20k dataset. Int. J. Comput. Vis. 127, 302–321 (2018)
Zisimopoulos, O., et al.: DeepPhase: surgical phase recognition in CATARACTS videos. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 265–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_31
Acknowledgements
The authors would like to thank Martin Huber, Jeremy Birch and Joan M. Nunez Do Rio for their contributions in the EndoVIS challenge participation. This work was supported by the National Institute for Health Research NIHR (Invention for Innovation, i4i; II-LB-0716-20002). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 73781 KB)
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Pissas, T., Ravasio, C.S., Da Cruz, L., Bergeles, C. (2021). Effective Semantic Segmentation in Cataract Surgery: What Matters Most?. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_49
Download citation
DOI: https://doi.org/10.1007/978-3-030-87202-1_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87201-4
Online ISBN: 978-3-030-87202-1
eBook Packages: Computer ScienceComputer Science (R0)