Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Effective Semantic Segmentation in Cataract Surgery: What Matters Most?

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Our work proposes neural network design choices that set the state-of-the-art on a challenging public benchmark on cataract surgery, CaDIS. Our methodology achieves strong performance across three semantic segmentation tasks with increasingly granular surgical tool class sets by effectively handling class imbalance, an inherent challenge in any surgical video. We consider and evaluate two conceptually simple data oversampling methods as well as different loss functions. We show significant performance gains across network architectures and tasks especially on the rarest tool classes, thereby presenting an approach for achieving high performance when imbalanced granular datasets are considered. Our code and trained models are available at https://github.com/RViMLab/MICCAI2021_Cataract_semantic_segmentation and qualitative results on unseen surgical video can be found at https://youtu.be/twVIPUj1WZM.

T. Pissas and C. S. Ravasio—Contributed equally.

L. Da Cruz and C. Bergeles—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blindness and vision impairment. https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment. Accessed 1 Mar 2021

  2. Al Hajj, H., et al.: Cataracts: challenge on automatic tool annotation for cataract surgery. Med. Image Anal. 52, 24–41 (2019)

    Article  Google Scholar 

  3. Berger, L., Eoin, H., Cardoso, M.J., Ourselin, S.: An adaptive sampling scheme to efficiently train fully convolutional networks for semantic segmentation. In: Nixon, M., Mahmoodi, S., Zwiggelaar, R. (eds.) MIUA 2018. CCIS, vol. 894, pp. 277–286. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95921-4_26

    Chapter  Google Scholar 

  4. Berman, M., Triki, A.R., Blaschko, M.B.: The lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4413–4421 (2018)

    Google Scholar 

  5. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  6. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  7. Fox, M., Taschwer, M., Schoeffmann, K.: Pixel-based tool segmentation in cataract surgery videos with mask R-CNN. In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), pp. 565–568. IEEE (2020)

    Google Scholar 

  8. Grammatikopoulou, M., et al.: Cadis: cataract dataset for surgical RGB-image segmentation. Med. Image Anal. 71,(2021). https://doi.org/10.1016/j.media.2021.102053

  9. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5356–5364 (2019)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Karpathy, A.: A recipe for training neural networks (2019). http://karpathy.github.io/2019/04/25/recipe/

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015 (2015)

    Google Scholar 

  13. Maier-Hein, L., et al.: Surgical data science-from concepts to clinical translation. arXiv preprint arXiv:2011.02284 (2020)

  14. Marcel, S., Rodriguez, Y.: Torchvision the machine-vision package of torch. In: Proceedings of the 18th ACM international conference on Multimedia, pp. 1485–1488 (2010)

    Google Scholar 

  15. Mishra, P., Sarawadekar, K.: Polynomial learning rate policy with warm restart for deep neural network. In: TENCON 2019–2019 IEEE Region 10 Conference (TENCON), pp. 2087–2092. IEEE (2019)

    Google Scholar 

  16. Morita, S., Tabuchi, H., Masumoto, H., Yamauchi, T., Kamiura, N.: Real-time extraction of important surgical phases in cataract surgery videos. Sci. Rep. 9(1), 1–8 (2019)

    Google Scholar 

  17. Ni, Z.-L., et al.: RAUNet: residual attention U-Net for semantic segmentation of cataract surgical instruments. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. LNCS, vol. 11954, pp. 139–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36711-4_13

    Chapter  Google Scholar 

  18. Padoy, N., Blum, T., Ahmadi, S.A., Feussner, H., Berger, M.O., Navab, N.: Statistical modeling and recognition of surgical workflow. Med. Image Anal. 16(3), 632–641 (2012)

    Article  Google Scholar 

  19. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  20. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)

    Google Scholar 

  21. Wang, W., Yan, W., Fotis, K., Prasad, N.M., Lansingh, V.C., Taylor, H.R., Finger, R.P., Facciolo, D., He, M.: Cataract surgical rate and socioeconomics: a global study. Invest. Ophthalmol. Vis. Sci. 57(14), 5872–5881 (2016)

    Article  Google Scholar 

  22. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 418–434 (2018)

    Google Scholar 

  23. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  24. Yu, F., et al.: Assessment of automated identification of phases in videos of cataract surgery using machine learning and deep learning techniques. JAMA Netw. Open 2(4), e191860–e191860 (2019)

    Article  Google Scholar 

  25. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. arXiv preprint arXiv:1909.11065 (2019)

  26. Zang, D., Bian, G.-B., Wang, Y., Li, Z.: An extremely fast and precise convolutional neural network for recognition and localization of cataract surgical tools. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 56–64. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_7

    Chapter  Google Scholar 

  27. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  28. Zhou, B., et al.: Semantic understanding of scenes through the ade20k dataset. Int. J. Comput. Vis. 127, 302–321 (2018)

    Article  Google Scholar 

  29. Zisimopoulos, O., et al.: DeepPhase: surgical phase recognition in CATARACTS videos. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 265–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_31

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Martin Huber, Jeremy Birch and Joan M. Nunez Do Rio for their contributions in the EndoVIS challenge participation. This work was supported by the National Institute for Health Research NIHR (Invention for Innovation, i4i; II-LB-0716-20002). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros Pissas .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 73781 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pissas, T., Ravasio, C.S., Da Cruz, L., Bergeles, C. (2021). Effective Semantic Segmentation in Cataract Surgery: What Matters Most?. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87202-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87201-4

  • Online ISBN: 978-3-030-87202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics