Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hybrid Supervision Learning for Pathology Whole Slide Image Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Weak supervision learning on classification labels has demonstrated high performance in various tasks, while a few pixel-level fine annotations are also affordable. Naturally a question comes to us that whether the combination of pixel-level (e.g., segmentation) and image level (e.g., classification) annotation can introduce further improvement. However in computational pathology this is a difficult task for this reason: High resolution of whole slide images makes it difficult to do end-to-end classification model training, which is challenging to research of weak or hybrid supervision learning in the past. To handle this problem, we propose a hybrid supervision learning framework for this kind of high resolution images with sufficient image-level coarse annotations and a few pixel-level fine labels. This framework, when applied in training patch model, can carefully make use of coarse image-level labels to refine generated pixel-level pseudo labels. Complete strategy is proposed to suppress pixel-level false positives and false negatives. A large hybrid annotated dataset is used to evaluate the effectiveness of hybrid supervision learning. By extracting pixel-level pseudo labels in initially image-level labeled samples, we achieve 5.2% higher specificity than purely training on existing labels while retaining 100% sensitivity, in the task of image-level classification to be positive or negative.

This study has been financially supported by fund of Science and Technology Commission Shanghai Municipality (19511121400), also partially supported by the Centre for Perceptual and Interactive Intelligence (CPII) Ltd under the Innovation and Technology Fund. Code of this paper is available at https://github.com/JarveeLee/HybridSupervisionLearning_Pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nature Med. 25(8), 1301–1309 (2019)

    Article  Google Scholar 

  2. Goode, A., Gilbert, B., Harkes, J., Jukic, D., Satyanarayanan, M.: Openslide: a vendor-neutral software foundation for digital pathology. J. Pathol. Inf. 4 (2013)

    Google Scholar 

  3. He, X., Zemel, R.S.: Learning hybrid models for image annotation with partially labeled data. In: Advances in Neural Information Processing Systems, pp. 625–632 (2009)

    Google Scholar 

  4. Heng, Z., Dipu, M., Yap, K.H.: Hybrid supervised deep learning for ethnicity classification using face images. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2018)

    Google Scholar 

  5. Hosang, A.K.R.B.J., Schiele, M.H.B.: Weakly supervised semantic labelling and instance segmentation. arXiv preprint arXiv:1603.07485 (2016)

  6. Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2424–2433 (2016)

    Google Scholar 

  7. Hu, R., Dollár, P., He, K., Darrell, T., Girshick, R.: Learning to segment every thing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4233–4241 (2018)

    Google Scholar 

  8. Huang, Y.J., et al.: Rectifying supporting regions with mixed and active supervision for rib fracture recognition. IEEE Trans. Med. Imaging (2020)

    Google Scholar 

  9. Khened, M., Kori, A., Rajkumar, H., Srinivasan, B., Krishnamurthi, G.: A generalized deep learning framework for whole-slide image segmentation and analysis. arXiv preprint arXiv:2001.00258 (2020)

  10. Li, J., et al.: Signet ring cell detection with a semi-supervised learning framework. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 842–854. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_66

    Chapter  Google Scholar 

  11. Li, Z., et al.: Thoracic disease identification and localization with limited supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8290–8299 (2018)

    Google Scholar 

  12. Mlynarski, P., Delingette, H., Criminisi, A., Ayache, N.: Deep learning with mixed supervision for brain tumor segmentation. J. Med. Imaging 6(3), 034002 (2019)

    Article  Google Scholar 

  13. Nagpal, K., et al.: Development and validation of a deep learning algorithm for improving gleason scoring of prostate cancer. NPJ Digit. Med. 2(1), 1–10 (2019)

    Article  MathSciNet  Google Scholar 

  14. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  15. Paszke, A.,et al.: Automatic differentiation in pytorch. In: NIPS-W (2017)

    Google Scholar 

  16. Pei, L., Vidyaratne, L., Monibor Rahman, M., Shboul, Z.A., Iftekharuddin, K.M.: Multimodal brain tumor segmentation and survival prediction using hybrid machine learning. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 73–81. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_7

    Chapter  Google Scholar 

  17. Robert, T., Thome, N., Cord, M.: Hybridnet: classification and reconstruction cooperation for semi-supervised learning. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 153–169 (2018)

    Google Scholar 

  18. Shaban, M., Awan, R., Fraz, M.M., Azam, A., Snead, D., Rajpoot, N.M.: Context-aware convolutional neural network for grading of colorectal cancer histology images. arXiv preprint arXiv:1907.09478 (2019)

  19. Shah, M.P., Merchant, S.N., Awate, S.P.: MS-Net: mixed-supervision fully-convolutional networks for full-resolution segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 379–387. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_44

    Chapter  Google Scholar 

  20. Ström, P., et al.: Pathologist-level grading of prostate biopsies with artificial intelligence. arXiv preprint arXiv:1907.01368 (2019)

  21. Takahama, S., et al.: Multi-stage pathological image classification using semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 10702–10711 (2019)

    Google Scholar 

  22. Xie, Q., Hovy, E., Luong, M.T., Le, Q.V.: Self-training with noisy student improves imagenet classification. arXiv preprint arXiv:1911.04252 (2019)

  23. Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412 (2018)

    Google Scholar 

  24. Zhao, X., Liang, S., Wei, Y.: Pseudo mask augmented object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4061–4070 (2018)

    Google Scholar 

  25. Zhou, Y., Graham, S., Alemi Koohbanani, N., Shaban, M., Heng, P.A., Rajpoot, N.: CGC-Net: Cell graph convolutional network for grading of colorectal cancer histology images. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoting Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J. et al. (2021). Hybrid Supervision Learning for Pathology Whole Slide Image Classification. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12908. Springer, Cham. https://doi.org/10.1007/978-3-030-87237-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87237-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87236-6

  • Online ISBN: 978-3-030-87237-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics