Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning from Subjective Ratings Using Auto-Decoded Deep Latent Embeddings

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Depending on the application, radiological diagnoses can be associated with high inter- and intra-rater variabilities. Most computer-aided diagnosis (CAD) solutions treat such data as incontrovertible, exposing learning algorithms to considerable and possibly contradictory label noise and biases. Thus, managing subjectivity in labels is a fundamental problem in medical imaging analysis. To address this challenge, we introduce auto-decoded deep latent embeddings (ADDLE), which explicitly models the tendencies of each rater using an auto-decoder framework. After a simple linear transformation, the latent variables can be injected into any backbone at any and multiple points, allowing the model to account for rater-specific effects on the diagnosis. Importantly, ADDLE does not expect multiple raters per image in training, meaning it can readily learn from data mined from hospital archives. Moreover, the complexity of training ADDLE does not increase as more raters are added. During inference each rater can be simulated and a “mean” or “greedy” virtual rating can be produced. We test ADDLE on the problem of liver steatosis diagnosis from 2D ultrasound (US) by collecting \(36\,602\) studies along with clinical US diagnoses originating from 65 different raters. We evaluated diagnostic performance using a separate dataset with gold-standard biopsy diagnoses. ADDLE can improve the partial areas under the curve (AUCs) for diagnosing severe steatosis by \(10.5\%\) over standard classifiers while outperforming other annotator-noise approaches, including those requiring 65 times the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biswas, M., Kuppili, V., Edla, D.R., Suri, H.S., Saba, L., Marinhoe, R.T., Sanches, J.M., Suri, J.S.: Symtosis: a liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm. Comput. Methods Programs Biomed. 155, 165–177 (2018)

    Article  Google Scholar 

  2. Byra, M., et al.: Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. Int. J. Comput. Assist. Radiol. Surg. 13(12), 1895–1903 (2018). https://doi.org/10.1007/s11548-018-1843-2

    Article  Google Scholar 

  3. Cheng, C.T., et al.: A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs. Nat. Commun. 12(1), 1–10 (2021)

    Article  Google Scholar 

  4. Chou, H., Lee, C.: Every rating matters: joint learning of subjective labels and individual annotators for speech emotion classification. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5886–5890 (2019)

    Google Scholar 

  5. Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates using the EM algorithm. J. Royal Stat. Soc. Ser. C (Appl. Stat.) 28(1), 20–28 (1979)

    Google Scholar 

  6. Frank, E., Hall, M.: A simple approach to ordinal classification. In: De Raedt, L., Flach, P. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 145–156. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44795-4_13

    Chapter  Google Scholar 

  7. Fürnkranz, J., Hüllermeier, E., Vanderlooy, S.: Binary decomposition methods for multipartite ranking. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5781, pp. 359–374. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04180-8_41

    Chapter  Google Scholar 

  8. Greenspan, H., Van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)

    Article  Google Scholar 

  9. Guan, M., Gulshan, V., Dai, A., Hinton, G.: Who said what: modeling individual labelers improves classification (2018)

    Google Scholar 

  10. Gummadi, S., et al.: Automated machine learning in the sonographic diagnosis of non-alcoholic fatty liver disease. Adv. Ultrasound Diagnosis Therapy 4(3), 176–182 (2020)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Hernaez, R., et al.: Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. Hepatology 54(3), 1082–1090 (2011)

    Article  Google Scholar 

  13. Jonckheere, A.R.: A distribution-free k-sample test against ordered alternatives. Biometrika 41(1/2), 133–145 (1954)

    Article  MathSciNet  Google Scholar 

  14. Khetan, A., Lipton, Z.C., Anandkumar, A.: Learning from noisy singly-labeled data. In: International Conference on Learning Representations (2018)

    Google Scholar 

  15. Li, B., et al.: Reliable liver fibrosis assessment from ultrasound using global hetero-image fusion and view-specific parameterization. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 606–615. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_58

    Chapter  Google Scholar 

  16. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  17. Reddy, D.S., Bharath, R., Rajalakshmi, P.: A novel computer-aided diagnosis framework using deep learning for classification of fatty liver disease in ultrasound imaging. In: 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–5. IEEE (2018)

    Google Scholar 

  18. Suzuki, K.: Overview of deep learning in medical imaging. Radiol. Phys. Technol. 10(3), 257–273 (2017). https://doi.org/10.1007/s12194-017-0406-5

    Article  Google Scholar 

  19. Tanno, R., Saeedi, A., Sankaranarayanan, S., Alexander, D.C., Silberman, N.: Learning from noisy labels by regularized estimation of annotator confusion. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11236–11245 (2019)

    Google Scholar 

  20. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7), 903–921 (2004)

    Article  Google Scholar 

  21. Welinder, P., Branson, S., Perona, P., Belongie, S.: The multidimensional wisdom of crowds. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 23. Curran Associates, Inc. (2010)

    Google Scholar 

  22. Willemink, M.J., et al.: Preparing medical imaging data for machine learning. Radiology 295(1), 4–15 (2020)

    Article  Google Scholar 

  23. Wu, K., Chen, X., Ding, M.: Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound. Optik 125(15), 4057–4063 (2014)

    Article  Google Scholar 

  24. Younossi, Z., et al.: Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15(1), 11–20 (2018). number: 1 Publisher: Nature Publishing Group

    Google Scholar 

  25. Yu, S., et al.: Difficulty-aware glaucoma classification with multi-rater consensus modeling. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 741–750. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_72

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 166 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, B. et al. (2021). Learning from Subjective Ratings Using Auto-Decoded Deep Latent Embeddings. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics