Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

VertNet: Accurate Vertebra Localization and Identification Network from CT Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Accurate localization and identification of vertebrae from CT images is a fundamental step in clinical spine diagnosis and treatment. Previous methods have made various attempts in this task; however, they fail to robustly localize the vertebrae with challenging appearance or identify vertebra labels from CT images with a limited field of view. In this paper, we propose a novel two-stage framework, VertNet, for accurate and robust vertebra localization and identification from CT images. Our method first detects all vertebra centers by a weighted voting-based localization network. Then, an identification network is designed to identify the label of each detected vertebra in leveraging the synergy of global and local information. Specifically, a bidirectional relation module is designed to learn the global correlation among vertebrae along the upward and downward directions, and a continuous label map with dense annotation is employed to enhance the feature learning in local vertebra patches. Extensive experiments on a large dataset collected from real-world clinics show that our framework can accurately localize and identify vertebrae in various challenging cases and outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, H., et al.: Automatic localization and identification of vertebrae in spine CT via a joint learning model with deep neural networks. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 515–522. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_63

    Chapter  Google Scholar 

  2. Chen, Y., Gao, Y., Li, K., Zhao, L., Zhao, J.: vertebrae identification and localization utilizing fully convolutional networks and a hidden Markov model. IEEE Trans. Med. Imaging 39(2), 387–399 (2019)

    Article  Google Scholar 

  3. Cui, Z., et al.: TSegNet: an efficient and accurate tooth segmentation network on 3D dental model. Med. Image Anal. 69, 101949 (2021)

    Google Scholar 

  4. Cui, Z., Li, C., Wang, W.: Toothnet: automatic tooth instance segmentation and identification from cone beam ct images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6368–6377 (2019)

    Google Scholar 

  5. Haldeman, S., et al.: The global spine care initiative: classification system for spine-related concerns. Eur. Spine J. 27(6), 889–900 (2018)

    Article  MathSciNet  Google Scholar 

  6. Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., Lorenz, C.: Automated model-based vertebra detection, identification, and segmentation in CT images. Med. Image Anal. 13(3), 471–482 (2009)

    Article  Google Scholar 

  7. Knez, D., Likar, B., Pernuš, F., Vrtovec, T.: Computer-assisted screw size and insertion trajectory planning for pedicle screw placement surgery. IEEE Trans. Med. Imaging 35(6), 1420–1430 (2016)

    Article  Google Scholar 

  8. Kumar, R.: Robotic assistance and intervention in spine surgery. In: Li, S., Yao, J. (eds.) Spinal Imaging and Image Analysis. LNCVB, vol. 18, pp. 495–506. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12508-4_16

    Chapter  Google Scholar 

  9. Létourneau, D., et al.: Semiautomatic vertebrae visualization, detection, and identification for online palliative radiotherapy of bone metastases of the spine. Med. Phys. 35(1), 367–376 (2008)

    Article  Google Scholar 

  10. Liao, H., Mesfin, A., Luo, J.: Joint vertebrae identification and localization in spinal CT images by combining short-and long-range contextual information. IEEE Trans. Med. Imaging 37(5), 1266–1275 (2018)

    Article  Google Scholar 

  11. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  12. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  13. Qin, C., Yao, D., Zhuang, H., Wang, H., Shi, Y., Song, Z.: Residual block-based multi-label classification and localization network with integral regression for vertebrae labeling. arXiv preprint arXiv:2001.00170 (2020)

  14. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)

    Google Scholar 

  15. Schmidt, S., et al.: Spine detection and labeling using a parts-based graphical model. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 122–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73273-0_11

    Chapter  Google Scholar 

  16. Sekuboyina, A., Rempfler, M., Valentinitsch, A., Kirschke, J.S., Menze, B.H.: Adversarially learning a local anatomical prior: vertebrae labelling with 2D reformations. arXiv preprint arXiv:1902.02205 (2019)

  17. Wang, F., Zheng, K., Lu, L., Xiao, J., Wu, M., Miao, S.: Automatic vertebra localization and identification in CT by spine rectification and anatomically-constrained optimization. arXiv preprint arXiv:2012.07947 (2020)

  18. Yang, D., et al.: Deep image-to-image recurrent network with shape basis learning for automatic vertebra labeling in large-scale 3D CT volumes. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 498–506. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_57

    Chapter  Google Scholar 

  19. Zhan, Y., Maneesh, D., Harder, M., Zhou, X.S.: Robust MR spine detection using hierarchical learning and local articulated model. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 141–148. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_18

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, Z. et al. (2021). VertNet: Accurate Vertebra Localization and Identification Network from CT Images. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics