Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

mfTrans-Net: Quantitative Measurement of Hepatocellular Carcinoma via Multi-Function Transformer Regression Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Quantitative measurement of hepatocellular carcinoma (HCC) on multi-phase contrast-enhanced magnetic resonance imaging (CEMRI) is one of the key processes for HCC treatment and prognosis. However, direct automated quantitative measurement using the CNN-based network a still challenging task due to: (1) The lack of ability for capturing long-range dependencies of multi-anatomy in the whole medical image; (2) The lack of mechanism for fusing and selecting multi-phase CEMRI information. In this study, we propose a multi-function Transformer regression network (mfTrans-Net) for HCC quantitative measurement. Specifically, we first design three parallel CNN-based encoders for multi-phase CEMRI feature extraction and dimension reducing. Next, the non-local Transformer makes our mfTrans-Net self-attention for capturing the long-range dependencies of multi-anatomy. At the same time, a phase-aware Transformer captures the relevance between multi-phase CEMRI for multi-phase CEMRI information fusion and selection. Lastly, we proposed a multi-level training strategy, which enables an enhanced loss function to improve the quantification task. The mfTrans-Net is validated on multi-phase CEMRI of 138 HCC subjects. Our mfTrans-Net achieves high performance of multi-index quantification that the mean absolute error of center point, max-diameter, circumference, and area is down to 2.35 mm, 2.38 mm, 8.28 mm, and 116.15 mm\(^2\), respectively. The results show that mfTrans-Net has great potential for small lesions quantification in medical images and clinical application value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cereser, L., et al.: Comparison of portal venous and delayed phases of gadolinium-enhanced magnetic resonance imaging study of cirrhotic liver for the detection of contrast washout of hypervascular hepatocellular carcinoma. J. Comput. Assist. Tomog 34(5), 706–711 (2010)

    Article  Google Scholar 

  2. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  3. Ge, R., et al.: K-net: integrate left ventricle segmentation and direct quantification of paired echo sequence. IEEE Trans. Med. Imaging 39(5), 1690–1702 (2019)

    Article  Google Scholar 

  4. Ge, R., et al.: Pv-lvnet: direct left ventricle multitype indices estimation from 2d echocardiograms of paired apical views with deep neural networks. Med. Image Anal. 58, 101554 (2019)

    Article  Google Scholar 

  5. Goh, B.K.: Importance of tumor size as a prognostic factor after partial liver resection for solitary hepatocellular carcinoma: Implications on the current ajcc staging system. J. Surg. Oncol 113(1), 89–93 (2016)

    Article  MathSciNet  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  8. Hwang, S., et al.: The impact of tumor size on long-term survival outcomes after resection of solitary hepatocellular carcinoma: single-institution experience with 2558 patients. J. Gastrointest. Surg. 19(7), 1281–1290 (2015)

    Article  Google Scholar 

  9. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. arXiv preprint arXiv:1506.02025 (2015)

  10. Kim, Y.S., et al.: Strahlentherapie und Onkologie 192(10), 714–721 (2016). https://doi.org/10.1007/s00066-016-1028-2

  11. Lin, L., et al.: Multiple axial spine indices estimation via dense enhancing network with cross-space distance-preserving regularization. IEEE J. Biomed. Health Inf. 24(11), 3248–3257 (2020)

    Article  Google Scholar 

  12. Liu, H., et al.: Reclassification of tumor size for solitary hbv-related hepatocellular carcinoma by minimum p value method: a large retrospective study. World J. Surg. Oncol. 18(1), 1–10 (2020)

    Article  Google Scholar 

  13. Liver, E.A.F.T.S.O.T., et al.: Easl clinical practice guidelines: management of hepatocellular carcinoma. J. Hepatol. 69(1), 182–236 (2018)

    Google Scholar 

  14. Pang, Shumao, Leung, Stephanie, Ben Nachum, Ilanit, Feng, Qianjin, Li, Shuo: Direct automated quantitative measurement of spine via cascade amplifier regression network. In: Frangi, Alejandro F.., Schnabel, Julia A.., Davatzikos, Christos, Alberola-López, Carlos, Fichtinger, Gabor (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 940–948. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_104

    Chapter  Google Scholar 

  15. Ruan, Y., et al.: Mb-fsgan: joint segmentation and quantification of kidney tumor on ct by the multi-branch feature sharing generative adversarial network. Med. Image Anal. 64, 101721 (2020)

    Article  Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  17. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)

  18. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  19. Wu, G., Wu, J., Wang, B., Zhu, X., Shi, X., Ding, Y.: Importance of tumor size at diagnosis as a prognostic factor for hepatocellular carcinoma survival: a population-based study. Cancer Manag. Res. 10, 4401 (2018)

    Article  Google Scholar 

  20. Xu, C., Howey, J., Ohorodnyk, P., Roth, M., Zhang, H., Li, S.: Segmentation and quantification of infarction without contrast agents via spatiotemporal generative adversarial learning. Med. Image Anal. 59, 101568 (2020)

    Article  Google Scholar 

  21. Zhao, J., et al.: Tripartite-gan: synthesizing liver contrast-enhanced mri to improve tumor detection. Med. Image Anal. 63, 101667 (2020)

    Article  Google Scholar 

  22. Zhao, J., Li, D., Xiao, X., Chong, J., Chen, B., Li, S.: United adversarial learning for liver tumor segmentation and detection of multi-modality non-contrast mri. Med. Image Anal., 102154 (2021)

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by the China Scholarship Council (No.202008370191).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dengwang Li or Shuo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, J. et al. (2021). mfTrans-Net: Quantitative Measurement of Hepatocellular Carcinoma via Multi-Function Transformer Regression Network. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics