Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Lightweight Non-local High-Resolution Networks for Human Pose Estimation

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12889))

Included in the following conference series:

  • 1800 Accesses

Abstract

Human pose estimation is one of the fundamental tasks in computer vision, applied in areas such as motion recognition, games, and animation production. Most of the current deep network models entail deepening the number of network layers to obtain better performance. This requires computational resources that exceed the computational capacity of embedded and mobile devices, thereby limiting the practical application of these approaches. In this paper, we propose a lightweight network model that incorporates the idea of Ghost modules. We design Ghost modules to replace the base modules in the original high-resolution network, thus reducing the network model parameters. In addition, we design a non-local high-resolution network that is fused in the 1/32 resolution stage of the network. This enables the network to acquire global features, thus improving the accuracy of human pose estimation and reducing the network parameters while ensuring the accuracy of the model. We verify the algorithm on the MPII and COCO datasets and the proposed model achieves a 1.8% improvement in accuracy while using 40% fewer parameters compared with the conventional high-resolution network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 7444–7452 (2018)

    Google Scholar 

  2. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Proceedings of the European Conference on Computer Vision, pp. 466–481 (2018)

    Google Scholar 

  3. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: European Conference on Computer Vision, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

  4. Yang, W., Li, S., Ouyang, W., et al.: Learning feature pyramids for human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1281–1290 (2017)

    Google Scholar 

  5. Chen, Y., Wang, Z., Peng, Y., et al.: Cascaded pyramid network for multi-person pose estimation. In: Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition, pp. 7103–7112 (2018)

    Google Scholar 

  6. Pishchulin, L., Insafutdinov, E., Tang, S., et al.: Deepcut: joint subset partition and labeling for multi person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4929–4937 (2016)

    Google Scholar 

  7. Insafutdinov, E., Pishchulin, L., Andres, B., et al.: Deepercut: a deeper, stronger, and faster multi-person pose estimation model. In: European Conference on Computer Vision. Springer, Cham pp. 34–50 (2016)

    Google Scholar 

  8. He, K.M., Zhang, X.Y., Ren, S.Q., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1007/978-3-319-46466-4_3

  9. Levinkov, E., Uhrig, J., Tang, S., et al.: Joint graph decomposition & node labeling: problem, algorithms, applications. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6012–6020 (2017)

    Google Scholar 

  10. Varadarajan, S., Datta, P., Tickoo, O.: A greedy part assignment algorithm for real-time multi-person 2D pose estimation. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, pp. 418–426 (2018)

    Google Scholar 

  11. Cao, Z., Simon, T., Wei, S.E., et al.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  12. Xia, F., Wang, P., Chen, X., et al.: Joint multi-person pose estimation and semantic part segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6769–6778 (2017)

    Google Scholar 

  13. Qiu, J., Yang, Y., Wang, X., Tao, D.: Hallucinating visual instances in total absentia. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 264–282. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_16

    Chapter  Google Scholar 

  14. Yang, Y., Ren, Z., Li, H., Zhou, C., Wang, X., Hua, G.: Learning dynamics via graph neural networks for human pose estimation and tracking. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  15. Rastegari, M., Ordonez, V., Redmon, J., et al.: Xnor-net: imagenet classification using binary convolutional neural networks. In: European Conference on Computer Vision, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

  16. Zhao, R., Tang, C.Q., Liu, W.L., et al.: A new BP neural network pruning algorithm based on grey relational analysis. Technol. Innov. Appl. 13, 17–18 (2016)

    Google Scholar 

  17. Iandola, F.N., Han, S., Moskewicz, M.W., et al.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size [EB/OL] (2016). https://arxiv.org/pdf/1602.07360.pdf

  18. Sun, K., Xiao, B., Liu, D., et al.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  19. Han, K., Wang, Y., Tian, Q., et al.: GhostNet: more features from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1580–1589 (2020)

    Google Scholar 

  20. Wang, X., Girshick, R., Gupta, A., et al.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  21. Andriluka, M., Pishchulin, L., Gehler, P., et al.: 2D human pose estimation: new benchmark and state of the art analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3686–3693 (2014)

    Google Scholar 

  22. Lin, T.-Y., et al.: Microsoft coco: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, C. et al. (2021). Lightweight Non-local High-Resolution Networks for Human Pose Estimation. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12889. Springer, Cham. https://doi.org/10.1007/978-3-030-87358-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87358-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87357-8

  • Online ISBN: 978-3-030-87358-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics