Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Alzheimer’s Disease Diagnosis via Deep Factorization Machine Models

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2021)

Abstract

The current state-of-the-art deep neural networks (DNNs) for Alzheimer’s Disease diagnosis use different biomarker combinations to classify patients, but do not allow extracting knowledge about the interactions of biomarkers. However, to improve our understanding of the disease, it is paramount to extract such knowledge from the learned model. In this paper, we propose a Deep Factorization Machine model that combines the ability of DNNs to learn complex relationships and the ease of interpretability of a linear model. The proposed model has three parts: (i) an embedding layer to deal with sparse categorical data, (ii) a Factorization Machine to efficiently learn pairwise interactions, and (iii) a DNN to implicitly model higher order interactions. In our experiments on data from the Alzheimer’s Disease Neuroimaging Initiative, we demonstrate that our proposed model classifies cognitive normal, mild cognitive impaired, and demented patients more accurately than competing models. In addition, we show that valuable knowledge about the interactions among biomarkers can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., et al.: Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. c 58, 82–115 (2020)

    Google Scholar 

  2. Dickerson, B.C., Bakkour, A., Salat, D.H., Feczko, E., Pacheco, J., et al.: The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex 19(3), 497–510 (2008)

    Article  Google Scholar 

  3. Fan, L., Mao, C., Hu, X., Zhang, S., Yang, Z., et al.: New insights into the pathogenesis of Alzheimer’s disease. Front. Neurol. 10, 1312 (2020)

    Article  Google Scholar 

  4. Fischl, B.: FreeSurfer. NeuroImage 62(2), 774–781 (2012)

    Article  Google Scholar 

  5. Gevrey, M., Dimopoulos, I., Lek, S.: Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Model. 160(3), 249–264 (2003)

    Article  Google Scholar 

  6. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR prediction. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 1725–1731 (2017)

    Google Scholar 

  7. Head, T., Kumar, M., Nahrstaedt, H., Louppe, G., Shcherbatyi, I.: scikit-optimize/scikit-optimize v0.8.1, September 2020. https://doi.org/10.5281/zenodo.4014775

  8. Hibar, D.P., Stein, J.L., Renteria, M.E., Arias-Vasquez, A., Desrivières, S., et al.: Common genetic variants influence human subcortical brain structures. Nature 520(7546), 224–229 (2015)

    Article  Google Scholar 

  9. Ho, D.E., Imai, K., King, G., Stuart, E.A.: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal. 15(3), 199–236 (2007)

    Article  Google Scholar 

  10. Jack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Article  Google Scholar 

  11. Jack, C.R., et al.: Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12(2), 207–216 (2013)

    Article  Google Scholar 

  12. Khatri, U., Kwon, G.R.: An efficient combination among sMRI, CSF, cognitive score, and APOE \(\epsilon \)4 biomarkers for classification of AD and MCI using extreme learning machine. Comput. Intell. Neurosci. 2020, 1–18 (2020)

    Article  Google Scholar 

  13. Lambert, J.C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., et al.: Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45(12), 1452–1458 (2013)

    Article  Google Scholar 

  14. Nestor, S.M., Rupsingh, R., Borrie, M., Smith, M., Accomazzi, V., et al.: Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain 131(9), 2443–2454 (2008)

    Article  Google Scholar 

  15. Ning, K., et al.: Classifying Alzheimer’s disease with brain imaging and genetic data using a neural network framework. Neurobiol. Aging 68, 151–158 (2018)

    Article  Google Scholar 

  16. Olden, J.D., Joy, M.K., Death, R.G.: An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol. Model. 178(3–4), 389–397 (2004)

    Article  Google Scholar 

  17. Patterson, C., et al.: World Alzheimer report 2018. Technical Report, Alzheimer’s Disease International (2018)

    Google Scholar 

  18. Petersen, R.C.: Mild cognitive impairment. N. Engl. J. Med. 364(23), 2227–2234 (2011)

    Article  Google Scholar 

  19. Reiman, E.M., Arboleda-Velasquez, J.F., Quiroz, Y.T., Huentelman, M.J., Beach, T.G., et al.: Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat. Commun. 11, 1–11 (2020)

    Article  Google Scholar 

  20. Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag recommendation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 81–90 (2010)

    Google Scholar 

  21. Saykin, A.J., Shen, L., Foroud, T.M., Potkin, S.G., et al.: Alzheimer’s disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans. Alzheimers Dement. 6(3), 265–273 (2010)

    Article  Google Scholar 

  22. Scheltens, P., et al.: Alzheimer’s disease. Lancet 388(10043), 505–517 (2016)

    Article  Google Scholar 

  23. Scott, S.A., DeKosky, S.T., Scheff, S.W.: Volumetric atrophy of the amygdala in Alzheimer’s disease: quantitative serial reconstruction. Neurology 41(3), 351–351 (1991)

    Article  Google Scholar 

  24. Singh, V., Chertkow, H., Lerch, J.P., Evans, A.C., Dorr, A.E., Kabani, N.J.: Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer’s disease. Brain 129(11), 2885–2893 (2006)

    Article  Google Scholar 

  25. Tang, M.X., et al.: Incidence of AD in African-Americans, Caribbean Hispanics, and Caucasians in Northern Manhattan. Neurology 56(1), 49–56 (2001)

    Article  MathSciNet  Google Scholar 

  26. Tang, M.X., et al.: The APOE-\(\epsilon \)4 Allele and the risk of Alzheimer disease among African Americans, Whites, and Hispanics. JAMA 279(10), 751–755 (1998)

    Article  Google Scholar 

  27. Teipel, S.J., Pruessner, J.C., Faltraco, F., Born, C., Rocha-Unold, M., et al.: Comprehensive dissection of the medial temporal lobe in AD: measurement of hippocampus, amygdala, entorhinal, perirhinal and parahippocampal cortices using MRI. J. Neurol. 253(6), 794–800 (2006)

    Article  Google Scholar 

  28. Tong, T., Gray, K., Gao, Q., Chen, L., Rueckert, D.: Nonlinear graph fusion for multi-modal classification of Alzheimer’s disease. In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds.) MLMI 2015. LNCS, vol. 9352, pp. 77–84. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24888-2_10

    Chapter  Google Scholar 

  29. Tsang, M., Cheng, D., Liu, Y.: Detecting statistical interactions from neural network weights. In: International Conference on Learning Representations (2018)

    Google Scholar 

  30. Venugopalan, J., Tong, L., Hassanzadeh, H.R., Wang, M.D.: Multimodal deep learning models for early detection of Alzheimer’s disease stage. Sci. Rep. 11(1), 1–3 (2021)

    Article  Google Scholar 

  31. Wachinger, C., Nho, K., Saykin, A.J., Reuter, M., Rieckmann, A.: A longitudinal imaging genetics study of neuroanatomical asymmetry in Alzheimer’s disease. Biol. Psychiatry 84(7), 522–530 (2018)

    Article  Google Scholar 

  32. Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., et al.: Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation. Med. Image Anal. 63, 101694 (2020)

    Article  Google Scholar 

  33. Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage 55(3), 856–867 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Bavarian State Ministry of Science and the Arts and coordinated by the Bavarian Research Institute for Digital Transformation, and the Federal Ministry of Education and Research in the call for Computational Life Sciences (DeepMentia, 031L0200A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Pölsterl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ronge, R., Nho, K., Wachinger, C., Pölsterl, S. (2021). Alzheimer’s Disease Diagnosis via Deep Factorization Machine Models. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87589-3_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87588-6

  • Online ISBN: 978-3-030-87589-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics