Abstract
The current state-of-the-art deep neural networks (DNNs) for Alzheimer’s Disease diagnosis use different biomarker combinations to classify patients, but do not allow extracting knowledge about the interactions of biomarkers. However, to improve our understanding of the disease, it is paramount to extract such knowledge from the learned model. In this paper, we propose a Deep Factorization Machine model that combines the ability of DNNs to learn complex relationships and the ease of interpretability of a linear model. The proposed model has three parts: (i) an embedding layer to deal with sparse categorical data, (ii) a Factorization Machine to efficiently learn pairwise interactions, and (iii) a DNN to implicitly model higher order interactions. In our experiments on data from the Alzheimer’s Disease Neuroimaging Initiative, we demonstrate that our proposed model classifies cognitive normal, mild cognitive impaired, and demented patients more accurately than competing models. In addition, we show that valuable knowledge about the interactions among biomarkers can be obtained.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., et al.: Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. c 58, 82–115 (2020)
Dickerson, B.C., Bakkour, A., Salat, D.H., Feczko, E., Pacheco, J., et al.: The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex 19(3), 497–510 (2008)
Fan, L., Mao, C., Hu, X., Zhang, S., Yang, Z., et al.: New insights into the pathogenesis of Alzheimer’s disease. Front. Neurol. 10, 1312 (2020)
Fischl, B.: FreeSurfer. NeuroImage 62(2), 774–781 (2012)
Gevrey, M., Dimopoulos, I., Lek, S.: Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Model. 160(3), 249–264 (2003)
Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR prediction. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 1725–1731 (2017)
Head, T., Kumar, M., Nahrstaedt, H., Louppe, G., Shcherbatyi, I.: scikit-optimize/scikit-optimize v0.8.1, September 2020. https://doi.org/10.5281/zenodo.4014775
Hibar, D.P., Stein, J.L., Renteria, M.E., Arias-Vasquez, A., Desrivières, S., et al.: Common genetic variants influence human subcortical brain structures. Nature 520(7546), 224–229 (2015)
Ho, D.E., Imai, K., King, G., Stuart, E.A.: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal. 15(3), 199–236 (2007)
Jack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)
Jack, C.R., et al.: Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12(2), 207–216 (2013)
Khatri, U., Kwon, G.R.: An efficient combination among sMRI, CSF, cognitive score, and APOE \(\epsilon \)4 biomarkers for classification of AD and MCI using extreme learning machine. Comput. Intell. Neurosci. 2020, 1–18 (2020)
Lambert, J.C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., et al.: Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45(12), 1452–1458 (2013)
Nestor, S.M., Rupsingh, R., Borrie, M., Smith, M., Accomazzi, V., et al.: Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain 131(9), 2443–2454 (2008)
Ning, K., et al.: Classifying Alzheimer’s disease with brain imaging and genetic data using a neural network framework. Neurobiol. Aging 68, 151–158 (2018)
Olden, J.D., Joy, M.K., Death, R.G.: An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol. Model. 178(3–4), 389–397 (2004)
Patterson, C., et al.: World Alzheimer report 2018. Technical Report, Alzheimer’s Disease International (2018)
Petersen, R.C.: Mild cognitive impairment. N. Engl. J. Med. 364(23), 2227–2234 (2011)
Reiman, E.M., Arboleda-Velasquez, J.F., Quiroz, Y.T., Huentelman, M.J., Beach, T.G., et al.: Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nat. Commun. 11, 1–11 (2020)
Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag recommendation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 81–90 (2010)
Saykin, A.J., Shen, L., Foroud, T.M., Potkin, S.G., et al.: Alzheimer’s disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans. Alzheimers Dement. 6(3), 265–273 (2010)
Scheltens, P., et al.: Alzheimer’s disease. Lancet 388(10043), 505–517 (2016)
Scott, S.A., DeKosky, S.T., Scheff, S.W.: Volumetric atrophy of the amygdala in Alzheimer’s disease: quantitative serial reconstruction. Neurology 41(3), 351–351 (1991)
Singh, V., Chertkow, H., Lerch, J.P., Evans, A.C., Dorr, A.E., Kabani, N.J.: Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer’s disease. Brain 129(11), 2885–2893 (2006)
Tang, M.X., et al.: Incidence of AD in African-Americans, Caribbean Hispanics, and Caucasians in Northern Manhattan. Neurology 56(1), 49–56 (2001)
Tang, M.X., et al.: The APOE-\(\epsilon \)4 Allele and the risk of Alzheimer disease among African Americans, Whites, and Hispanics. JAMA 279(10), 751–755 (1998)
Teipel, S.J., Pruessner, J.C., Faltraco, F., Born, C., Rocha-Unold, M., et al.: Comprehensive dissection of the medial temporal lobe in AD: measurement of hippocampus, amygdala, entorhinal, perirhinal and parahippocampal cortices using MRI. J. Neurol. 253(6), 794–800 (2006)
Tong, T., Gray, K., Gao, Q., Chen, L., Rueckert, D.: Nonlinear graph fusion for multi-modal classification of Alzheimer’s disease. In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds.) MLMI 2015. LNCS, vol. 9352, pp. 77–84. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24888-2_10
Tsang, M., Cheng, D., Liu, Y.: Detecting statistical interactions from neural network weights. In: International Conference on Learning Representations (2018)
Venugopalan, J., Tong, L., Hassanzadeh, H.R., Wang, M.D.: Multimodal deep learning models for early detection of Alzheimer’s disease stage. Sci. Rep. 11(1), 1–3 (2021)
Wachinger, C., Nho, K., Saykin, A.J., Reuter, M., Rieckmann, A.: A longitudinal imaging genetics study of neuroanatomical asymmetry in Alzheimer’s disease. Biol. Psychiatry 84(7), 522–530 (2018)
Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., et al.: Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation. Med. Image Anal. 63, 101694 (2020)
Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage 55(3), 856–867 (2011)
Acknowledgements
This research was supported by the Bavarian State Ministry of Science and the Arts and coordinated by the Bavarian Research Institute for Digital Transformation, and the Federal Ministry of Education and Research in the call for Computational Life Sciences (DeepMentia, 031L0200A).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Ronge, R., Nho, K., Wachinger, C., Pölsterl, S. (2021). Alzheimer’s Disease Diagnosis via Deep Factorization Machine Models. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_64
Download citation
DOI: https://doi.org/10.1007/978-3-030-87589-3_64
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87588-6
Online ISBN: 978-3-030-87589-3
eBook Packages: Computer ScienceComputer Science (R0)