Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Detection of Lymph Nodes in T2 MRI Using Neural Network Ensembles

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2021)

Abstract

Reliable localization of abnormal lymph nodes in T2 Magnetic Resonance Imaging (MRI) scans is needed for staging and treatment of lymphoproliferative diseases. Radiologists need to accurately characterize the size and shape of the lymph nodes and may require an additional contrast sequence such as diffusion weighted imaging (DWI) for staging confirmation. The varied appearance of lymph nodes in T2 MRI makes staging for metastasis challenging. Moreover, radiologists often times miss smaller lymph nodes that could be malignant over the course of a busy clinical day. To address these imaging and workflow issues, in this pilot work we aim to localize potentially suspicious lymph nodes for staging. We use state-of-the-art detection neural networks to localize lymph nodes in T2 MRI scans acquired through a variety of scanners and exam protocols, and employ bounding box fusion techniques to reduce false positives (FP) and boost detection accuracy. We construct an ensemble of the best detection models to identify potential lymph node candidates for staging, obtaining a 71.75% precision and 91.96% sensitivity at 4 FP per image. To the best of our knowledge, our results improve upon the current state-of-the-art techniques for lymph node detection in T2 MRI scans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Taupitz, M.: Imaging of lymph nodes — MRI and CT. In: Hamm, B., Forstner, R. (eds.) MRI and CT of the Female Pelvis. MR, pp. 321–329. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-68212-7_15

    Chapter  Google Scholar 

  2. Amin, M.B., et al.: The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “Personalized” approach to cancer staging, CA Cancer J. Clin. 67(2), 93–99 (2017)

    Google Scholar 

  3. Zhao, X., et al.: Deep learning based fully automated detection and segmentation of lymph nodes on multiparametric MRI for rectal cancer: a multicentre study. eBioMedicine 56 (2020)

    Google Scholar 

  4. Caglic, I., et al.: Diffusion-weighted imaging (DWI) in lymph node staging for prostate cancer. Transl. Androl. Urol. 7(5), 814–823 (2018)

    Article  Google Scholar 

  5. Heijnen, L.A., et al.: Diffusion-weighted MR imaging in primary rectal cancer staging demonstrates but does not Characterise lymph nodes. Eur. Radiol. 23, 3354–3360 (2013)

    Article  Google Scholar 

  6. Ganeshalingam, S., et al.: Nodal staging. Cancer Imaging 9(1), 104–111 (2009)

    Article  Google Scholar 

  7. Debats, O.A., et al.: Lymph node detection in MR lymphography: false positive reduction using multi-view convolutional neural networks. PeerJ 7, e8052 (2019)

    Google Scholar 

  8. Lu, Y., et al.: Identification of metastatic lymph nodes in MR imaging with faster region-based convolutional neural networks. Cancer Res. 78(17), 5135–5143 (2018)

    Google Scholar 

  9. Liu, J., et al.: Mediastinal lymph node detection and station mapping on chest CT using spatial priors and random forest. Med. Phys. 43, 4362–4374 (2016)

    Article  Google Scholar 

  10. Seff, A., Lu, L., Barbu, A., Roth, H., Shin, H.-C., Summers, R.M.: Leveraging mid-level semantic boundary cues for automated lymph node detection. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 53–61. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24571-3_7

    Chapter  Google Scholar 

  11. Roth, H.R., et al.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 520–527. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_65

    Chapter  Google Scholar 

  12. Barbu, A., et al.: Automatic detection and segmentation of lymph nodes from CT data. IEEE Trans. Med. Imaging 31, 240–250 (2012)

    Article  Google Scholar 

  13. Feulner, J., et al.: Lymph node detection and segmentation in chest CT data using discriminative learning and a spatial prior. Med. Image Anal. 17 (2012)

    Google Scholar 

  14. Feuerstein, M., et al.: Automatic mediastinal lymph node detection in chest CT. Med. Imaging (2009)

    Google Scholar 

  15. Kitasaka, T., et al.: Automated extraction of lymph nodes from 3-D abdominal CT images using 3-D minimum directional difference filter. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 336–343. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75759-7_41

    Chapter  Google Scholar 

  16. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE PAMI 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  17. Qiao, S., et al.: DetectoRS: detecting objects with recursive feature pyramid and switchable Atrous convolution, arXiv (2020)

    Google Scholar 

  18. Redmon, J., et al.: YOLOv3: an incremental improvement, arXiv (2018)

    Google Scholar 

  19. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  20. Lin, T.Y., et al.: Focal loss for dense object detection. In: ICCV, pp. 2999–3007 (2017)

    Google Scholar 

  21. Tian, Z., et al.: FCOS: fully convolutional one-stage object detection. In: ICCV, pp. 9627–9636 (2019)

    Google Scholar 

  22. Kong, T., et al.: FoveaBox: beyond anchor-based object detector, arXiv (2019)

    Google Scholar 

  23. Zhang, H., et al.: VarifocalNet: an IoU-aware dense object detector. In: CVPR, pp. 8514–8523 (2021)

    Google Scholar 

  24. Solovyev, R., et al.: Weighted boxes fusion: ensembling boxes from different object detection models. Img. Vis. Comp. 107 (2021)

    Google Scholar 

  25. Kociolek, M., et al.: Does image normalization and intensity resolution impact texture classification? Comput. Med. Imaging Graph. 81 (2020)

    Google Scholar 

  26. Chen, C.-M., et al.: Automatic contrast enhancement of brain MR images using hierarchical correlation histogram analysis. J. Med. Biol. Eng. 35(6), 724–734 (2015). https://doi.org/10.1007/s40846-015-0096-6

    Article  Google Scholar 

  27. Lin, T.Y., et al.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)

    Google Scholar 

  28. Long, J., et al.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  29. Zlocha, M., Dou, Q., Glocker, B.: Improving RetinaNet for CT lesion detection with dense masks from weak RECIST labels. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 402–410. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_45

    Chapter  Google Scholar 

  30. Yan, K., et al.: MULAN: multitask universal lesion analysis network for joint lesion detection, tagging, and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 194–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_22

    Chapter  Google Scholar 

  31. Gidaris, S., et al.: Object detection via a multi-region and semantic segmentation-aware CNN model. In: ICCV, pp. 1134–1142 (2015)

    Google Scholar 

  32. Jaeger, P., et al.: Retina U-net: embarrassingly simple exploitation of segmentation supervision for medical object detection. In: ML4H at NeurIPS, pp. 1–12 (2019)

    Google Scholar 

  33. Peng, Y., et al.: Automatic recognition of abdominal lymph nodes from clinical text. Clin. Nat. Lang. Proc. (2020)

    Google Scholar 

  34. Chen, K., et al.: MMDetection: open MMLab detection toolbox and benchmark, arXiv (2019)

    Google Scholar 

  35. Yan, K., et al.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in CT. IEEE Trans. Med. Imag. (2020)

    Google Scholar 

  36. Langman, G., et al.: Size and distribution of lymph nodes in rectal cancer resection specimens. Dis. Col. Rec. 58(4), 406–414 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Programs of the NIH National Library of Medicine and NIH Clinical Center. We also thank Jaclyn Burge for the helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejas Sudharshan Mathai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mathai, T.S. et al. (2021). Detection of Lymph Nodes in T2 MRI Using Neural Network Ensembles. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87589-3_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87588-6

  • Online ISBN: 978-3-030-87589-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics