Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Solving the Shipment Rerouting Problem with Quantum Optimization Techniques

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2021)

Abstract

In this work we develop methods to optimize an industrially-relevant logistics problem using quantum computing. We consider the scenario of partially filled trucks transporting shipments between a network of hubs. By selecting alternative routes for some shipment paths, we optimize the trade-off between merging partially filled trucks using fewer trucks in total and the increase in distance associated with shipment rerouting. The goal of the optimization is thus to minimize the total distance travelled for all trucks transporting shipments. The problem instances and techniques used to model the optimization are drawn from real-world data describing an existing shipment network in Europe. We show how to construct this optimization problem as a quadratic unconstrained binary optimization (QUBO) problem. We then solve these QUBOs using classical and hybrid quantum-classical algorithms, and explore the viability of these algorithms for this logistics problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Simply increasing the bin capacity may worsen the situation. For instance, suppose that \(v(s) = c_\mathrm {vol} / 2\) for each shipment s so that \(b(s) = \left\lceil c_\mathrm {bin} / 2 \right\rceil \) . If \(c_\mathrm {bin} = 2\), then \(b(s) = 1\) so that we can put two shipments into a truck. But if \(c_\mathrm {bin} = 3\), then \(b(s) = 2\) so that we can put only one shipment into a truck.

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

    Google Scholar 

  2. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 439(1907), 553–558 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pp. 212–219. Association for Computing Machinery, New York (1996)

    Google Scholar 

  4. Amin, M.H., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum Boltzmann machine. Phys. Rev. X 8(2), 021050 (2018)

    Google Scholar 

  5. Alexander, C., Shi, L., Akhmametyeva, S.: Using quantum mechanics to cluster time series. arXiv:1805.01711 (2018)

  6. Neukart, F., Compostella, G., Seidel, C., von Dollen, D., Yarkoni, S., Parney, B.: Traffic flow optimization using a quantum annealer. Front. ICT 4, 29 (2017)

    Article  Google Scholar 

  7. Venturelli, D., JJ Marchand, D., Rojo, G.: Quantum annealing implementation of job-shop scheduling. arXiv:1506.08479 (2015)

  8. Streif, M., Neukart, F., Leib, M.: Solving quantum chemistry problems with a D-wave quantum annealer. In: Feld, S., Linnhoff-Popien, C. (eds.) QTOP 2019. LNCS, vol. 11413, pp. 111–122. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14082-3_10

    Chapter  Google Scholar 

  9. Quantum, G.A.I.: Hartree-fock on a superconducting qubit quantum computer. Science 369(6507), 1084–1089 (2020)

    Article  MathSciNet  Google Scholar 

  10. Venturelli, D., Kondratyev, A.: Reverse quantum annealing approach to portfolio optimization problems. Quant. Mach. Intell 1(1), 17–30 (2019). https://doi.org/10.1007/s42484-019-00001-w

    Article  Google Scholar 

  11. Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)

    Article  Google Scholar 

  12. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv:1411.4028 (2014)

  13. Aharonov, D., Van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Rev. 50(4), 755–787 (2008)

    Article  MathSciNet  Google Scholar 

  14. Barahona, F.: On the computational complexity of ising spin glass models. J. Phys. A Math. Gener. 15(10), 3241 (1982)

    Article  MathSciNet  Google Scholar 

  15. Lucas, A.: Ising formulations of many np problems. Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  16. Ding, Y., Chen, X., Lamata, L., Solano, E., Sanz, M.: Implementation of a hybrid classical-quantum annealing algorithm for logistic network design. SN Comput. Sci. 2(2), 68 (2021)

    Article  Google Scholar 

  17. Stollenwerk, T., et al.: Quantum annealing applied to de-conflicting optimal trajectories for air traffic management. IEEE Trans. Intell. Transp. Syst. 21(1), 285–297 (2020)

    Article  Google Scholar 

  18. Domino, K., Koniorczyk, M., Krawiec, K.,Jałowiecki, K., Gardas, B.: Quantum computing approach to railway dispatching and conflict management optimization on single-track railway lines. arXiv:2010.08227 (2021)

  19. Costa, A.M.: A survey on benders decomposition applied to fixed-charge network design problems. Comput. Oper. Res. 32(6), 1429–1450 (2005)

    Article  MathSciNet  Google Scholar 

  20. Paraskevopoulos, D.C., Bektaş, T., Crainic, T.G., Potts, C.N.: A cycle-based evolutionary algorithm for the fixed-charge capacitated multi-commodity network design problem. Eur. J. Oper. Res. 253(2), 265–279 (2016)

    Article  MathSciNet  Google Scholar 

  21. Yaghini, M., Momeni, M., Sarmadi, M.: A simplex-based simulated annealing algorithm for node-arc capacitated multicommodity network design. Appl. Soft Comput. 12(9), 2997–3003 (2012)

    Article  Google Scholar 

  22. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  23. Rønnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., Martinis, J.M., Lidar, D.A., Troyer, M.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014)

    Article  Google Scholar 

  24. King, J., et al.: Quantum annealing amid local ruggedness and global frustration. J. Phys. Soc. Jpn. 88(6), 061007 (2019)

    Article  Google Scholar 

  25. D-Wave Systems has produced an open-source library in Python (dimod) for solvers that optimize QUBOs and Ising Hamiltonians. More information can be found here. https://docs.ocean.dwavesys.com/en/stable/docs_dimod/

  26. Glover, F.: Tabu search–part I. ORSA J. Comput. 1(3), 190–206 (1989)

    Article  Google Scholar 

  27. Yarkoni, S., et al.: Quantum shuttle: traffic navigation with quantum computing, pp. 22–30. Association for Computing Machinery, New York (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheir Yarkoni .

Editor information

Editors and Affiliations

A Solver Parameters

A Solver Parameters

Here we present the time allocated to each solver in Table 2, and the corresponding parameters in Table 3. For the D-Wave HSS, we limit the 30 and 50 shipment instances to only 5 minutes of run-time. We note that these 5 minutes were sufficient for the problems tested. Because we could not control the usage of the QPU in the D-Wave HSS, we report the QPU run-time in the timing results rather than a parameter. All software solvers were executed using single-threaded programs.

Table 2. Table of run-time allocated to each solver in the experimental setup.
Table 3. Parameter sets used for each solver. Parameters not mentioned were set to default values.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yarkoni, S. et al. (2021). Solving the Shipment Rerouting Problem with Quantum Optimization Techniques. In: Mes, M., Lalla-Ruiz, E., Voß, S. (eds) Computational Logistics. ICCL 2021. Lecture Notes in Computer Science(), vol 13004. Springer, Cham. https://doi.org/10.1007/978-3-030-87672-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87672-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87671-5

  • Online ISBN: 978-3-030-87672-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics