Abstract
Worldwide, snow and ice can be polluted with impurities also referred as Light-Absorbing Particles (LAPs). In this chapter, we review the different processes occurring at middle latitudes, tropical areas, and polar regions. We show that snow and ice albedo reduction due to LAPs deposition or resurfacing is a global phenomenon with regional characteristics. Later in the chapter, we provide a classification of LAPs based on their optical features. We divided LAPs in non-carbonaceous (mineral dust) and carbonaceous (biogenic particles and cryoconite), and we created a set of radiative transfer simulations for each category. Lastly, we described different observation approaches for studying LAPs impact on snow and ice. We divided these methods in proximal (field spectroscopy) and remote (aerial surveys and satellite data) sensing. We expect that the study of LAPs in snow and ice will grow in the future, and more data and models will be developed in order to describe the hydrological and climatic effect of LAPs in the cryosphere.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aarons SM, Aciego SM, Gabrielli P, Delmonte B, Koornneef JM, Wegner A, Blakowski MA (2016) The impact of glacier retreat from the Ross Sea on local climate: characterization of mineral dust in the Taylor Dome ice core, East Antarctica. Earth Planet Sci Lett 444:34–44. https://doi.org/10.1016/J.EPSL.2016.03.035
Andreae MO, Gelencsér A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6(10):3131–3148. https://doi.org/10.5194/acp-6-3131-2006
Anesio AM, Laybourn-Parry J (2012) Glaciers and ice sheets as a biome. Trends Ecol Evol 27(4):219–225. https://doi.org/10.1016/J.TREE.2011.09.012
Anesio AM, Lutz S, Chrismas NAM, Benning LG (2017) The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes 3(1):10. https://doi.org/10.1038/s41522-017-0019-0
Aoki T, Kuchiki K, Niwano M, Kodama Y, Hosaka M, Tanaka T (2011) Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models. J Geophys Res 116(D11):D11114. https://doi.org/10.1029/2010JD015507
Baccolo G, Di Mauro B, Massabò D, Clemenza M, Nastasi M, Delmonte B, Prata M, Prati P, Previtali E, Maggi V (2017) Cryoconite as a temporary sink for anthropogenic species stored in glaciers. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-10220-5.
Baccolo G, Delmonte B, Albani S, Baroni C, Cibin G, Frezzotti M, Hampai D, Marcelli A, Revel M, Salvatore MC, Stenni B, Maggi V (2018) Regionalization of the atmospheric dust cycle on the periphery of the East Antarctic Ice Sheet Since the Last Glacial Maximum. Geochem Geophys Geosyst 19(9):3540–3554. https://doi.org/10.1029/2018GC007658
Baccolo G, Delmonte B, Niles PB, Cibin G, Di Stefano E, Hampai D, Keller L, Maggi V, Marcelli A, Michalski J, Snead C, Frezzotti M (2021) Jarosite formation in deep Antarctic ice provides a window into acidic, water-limited weathering on Mars. Nat Commun 121, 12(1):1–8. https://doi.org/10.1038/s41467-020-20705-z
Balkanski Y, Schulz M, Claquin T, Guibert S (2007) Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmos Chem Phys 7(1):81–95. https://doi.org/10.5194/ACP-7-81-2007
Baroni C (1988) The Hell’s Gate and Backstairs Passage ice shelves (Victoria Land, Antarctica). Mem Soc Geol It 34:103–128
Beres ND, Sengupta D, Samburova V, Khlystov AY, Moosmüller H (2020) Deposition of brown carbon onto snow: Changes in snow optical and radiative properties. Atmos Chem Phys 20(10):6095–6114. https://doi.org/10.5194/ACP-20-6095-2020
Bergstrom RW (1973) Extinction and absorption coefficients of the atmospheric aerosol as a function of particle size. Contrib Atmos Phys 46(4):223–234. https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201602003593900637. Accessed 28 July 2021
Bhandari J, China S, Chandrakar KK, Kinney G, Cantrell W, Shaw RA, Mazzoleni LR, Girotto G, Sharma N, Gorkowski K, Gilardoni S, Decesari S, Facchini MC, Zanca N, Pavese G, Esposito F, Dubey MK, Aiken AC, Chakrabarty RK, Moosmüller H, Onasch TB, Zaveri RA, Scarnato BV, Fialho P, Mazzoleni C (2019) Extensive soot compaction by cloud processing from laboratory and field observations. Sci Rep 91, 9(1):1–12. https://doi.org/10.1038/s41598-019-48143-y
Bintanja R (1999) On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas. Rev Geophys 37(3):337–359. https://doi.org/10.1029/1999RG900007
Bøggild CE, Brandt RE, Brown KJ, Warren SG (2010) The ablation zone in northeast Greenland: ice types, albedos and impurities. J Glaciol 56(195):101–113
Bohn N, Painter TH, Thompson DR, Carmon N, Susiluoto J, Turmon MJ, Helmlinger MC, Green RO, Cook JM, Guanter L (2021) Optimal estimation of snow and ice surface parameters from imaging spectroscopy measurements. Remote Sens Environ 264, 112613. https://doi.org/10.1016/J.RSE.2021.112613
Bond TC, Bergstrom RW (2007) Light Absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol 40(1):27–67. https://doi.org/10.1080/02786820500421521
Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118(11):5380–5552. https://doi.org/10.1002/jgrd.50171
Bory A, Wolff E, Mulvaney R, Jagoutz E, Wegner A, Ruth U, Elderfield H (2010) Multiple sources supply eolian mineral dust to the Atlantic sector of coastal Antarctica: evidence from recent snow layers at the top of Berkner Island ice sheet. Earth Planet Sci Lett 291(1–4):138–148. https://doi.org/10.1016/J.EPSL.2010.01.006
Bourgeois Q, Ekman AML, Krejci R (2015) Aerosol transport over the Andes from the Amazon Basin to the remote Pacific Ocean: A multiyear CALIOP assessment. J Geophys Res Atmos 120(16):8411–8425. https://doi.org/10.1002/2015JD023254
van den Broeke M, König-Langlo G, Picard G, Munneke PK, Lenaerts J (2010) Surface energy balance, melt and sublimation at Neumayer Station, East Antarctica. Antarct Sci 22(1):87–96. https://doi.org/10.1017/S0954102009990538
Bullard JE (2013) Contemporary glacigenic inputs to the dust cycle. Earth Surf Process Landf 38(September 2012):71–89. https://doi.org/10.1002/esp.3315; Bullard JE, Baddock M, Bradwell T, Crusius J, Darlington E, Gaiero D, Gassó S, Gisladottir G, Hodgkins R, McCulloch R, McKenna-Neuman C, Mockford T, Stewart H, Thorsteinsson T (2016) High-latitude dust in the Earth system. Rev Geophys 54(2):447–485. https://doi.org/10.1002/2016RG000518
Bullard JE, Baddock M, Bradwell T, Crusius J, Darlington E, Gaiero D, Gassó S, Gisladottir G, Hodgkins R, McCulloch R, McKenna-Neuman C, Mockford T, Stewart H, Thorsteinsson T (2016) High-latitude dust in the Earth system. Rev Geophys 54(2):447–485. https://doi.org/10.1002/2016RG000518
Carmagnola CM, Domine F, Dumont M, Wright P, Strellis B, Bergin M, Dibb J, Picard G, Libois Q, Arnaud L, Morin S (2013) Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack. Cryosph 7(4):1139–1160. https://doi.org/10.5194/tc-7-1139-2013
Casey KA Kääb A, Benn DI (2012) Geochemical characterization of supraglacial debris via in situ and optical remote sensing methods: a case study in Khumbu Himalaya, Nepal. The Cryosphere 6(1):85–100. https://doi.org/10.5194/tc-6-85-2012
Casey KA, Polashenski CM, Chen J, Tedesco M (2017) Impact of MODIS sensor calibration updates on Greenland ice sheet surface reflectance and albedo trends. Cryosphere 11(4):1781–1795. https://doi.org/10.5194/TC-11-1781-2017
Cereceda-Balic F, Vidal V, Ruggeri MF, González HE (2020) Black carbon pollution in snow and its impact on albedo near the Chilean stations on the Antarctic peninsula: first results. Sci Total Environ 743, 140801. https://doi.org/10.1016/J.SCITOTENV.2020.140801
Chen Y, Bond TC (2010) Light absorption by organic carbon from wood combustion. Atmos Chem Phys 10(4):1773–1787. https://doi.org/10.5194/ACP-10-1773-2010
Chuvieco E, Opazo S, Sione W, del Valle H, Anaya J, Bella CD, Cruz I, Manzo L, López G, Mari N, González-Alonso F, Morelli F, Setzer A, Csiszar I, Kanpandegi JA, Bastarrika A, Libonati R (2008) Global burned-land estimation in Latin America using MODIS composite data. Ecol Appl 18(1):64–79. https://doi.org/10.1890/06-2148.1
Cogliati S, Sarti F, Chiarantini L, Cosi M, Lorusso R, Lopinto E, Miglietta F, Genesio L, Guanter L, Damm A, Pérez-López S, Scheffler D, Tagliabue G, Panigada C, Rascher U, Dowling TPF, Giardino C, Colombo R (2021) The PRISMA imaging spectroscopy mission: overview and first performance analysis. Remote Sens Environ 262, 112499. https://doi.org/10.1016/J.RSE.2021.112499
Cong Z, Gao S, Zhao W, Wang X, Wu G, Zhang Y, Kang S, Liu Y, Ji J (2018) Iron oxides in the cryoconite of glaciers on the Tibetan Plateau: abundance, speciation and implications. Cryosph 12(10):3177–3186. https://doi.org/10.5194/tc-12-3177-2018
Cook J, Edwards A, Takeuchi N, Irvine-Fynn T (2016) Cryoconite: The dark biological secret of the cryosphere. Prog Phys Geogr 40(1):66–111. https://doi.org/10.1177/0309133315616574
Cook J, Flanner M, Williamson C, McKenzie Skiles S (2019) Bio-optical properties of terrestrial snow and ice, in springer series in light scattering, edited by Kokhanovsky A. Springer, Cham, pp 129–163
Cook JM, Hodson AJ, Taggart AJ, Mernild SH, Tranter M (2017a) A predictive model for the spectral “bioalbedo” of snow. J Geophys Res Earth Surf 122(1):434–454. https://doi.org/10.1002/2016JF003932
Cook JM, Hodson AJ, Gardner AS, Flanner M, Tedstone AJ, Williamson C, Irvine-Fynn TDL, Nilsson J, Bryant R, Tranter M (2017b) Quantifying bioalbedo: A new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. Cryosphere 11(6):2611–2632. https://doi.org/10.5194/TC-11-2611-2017
Cook JM, Tedstone AJ, Williamson C, McCutcheon J, Hodson AJ, Dayal A, Skiles M, Hofer S, Bryant R, McAree O, McGonigle A, Ryan J, Anesio AM, Irvine-Fynn TDL, Hubbard A, Hanna E, Flanner M, Mayanna S, Benning LG, van As D, Yallop M, McQuaid JB, Gribbin T, Tranter M (2020a) Glacier algae accelerate melt rates on the south-western Greenland ice sheet. Cryosphere 14(1):309–330. https://doi.org/10.5194/tc-14-309-2020
Dang C, Zender CS, Flanner MG (2019) Intercomparison and improvement of two-stream shortwave radiative transfer schemes in Earth system models for a unified treatment of cryospheric surfaces. Cryosphere 13(9):2325–2343. https://doi.org/10.5194/tc-13-2325-2019
Delmonte B, Winton H, Baroni M, et al (2020) Holocene dust in East Antarctica: provenance and variability in time and space. The Holocene 30(4):546–558. https://doi.org/10.1177/0959683619875188
Dial RJ, Ganey GQ, Skiles SM (2018) What color should glacier algae be? An ecological role for red carbon in the cryosphere. FEMS Microbiol Ecol 94(3). https://doi.org/10.1093/femsec/fiy007
Di Mauro B (2020) A darker cryosphere in a warming world. Nat Clim Chang. https://doi.org/10.1038/s41558-020-00911-9
Di Mauro B, Fava F, Ferrero L, Garzonio R, Baccolo G, Delmonte B, Colombo R (2015) Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations. J Geophys Res 120(12). https://doi.org/10.1002/2015JD023287
Di Mauro B, Baccolo G, Garzonio R, Giardino C, Massabò D, Piazzalunga A, Rossini M, Colombo R (2017) Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps). Cryosphere 11(6). https://doi.org/10.5194/tc-11-2393-2017
Di Mauro B, Garzonio R, Rossini M, Filippa G, Pogliotti P, Galvagno M, Morra Di Cella U, Migliavacca M, Baccolo G, Clemenza M, Delmonte B, Maggi V, Dumont M, Tuzet F, Lafaysse M, Morin S, Cremonese E, Colombo R (2019) Saharan dust events in the European Alps: role in snowmelt and geochemical characterization. Cryosphere 13(4). https://doi.org/10.5194/tc-13-1147-2019
Di Mauro B, Garzonio R, Baccolo G, Franzetti A, Pittino F, Leoni B, Remias D, Colombo R, Rossini M (2020a) Glacier algae foster ice-albedo feedback in the European Alps. Sci Rep 10(1):1–9. https://doi.org/10.1038/s41598-020-61762-0
Di Mauro B, Garzonio R, Bramati G, Cogliati S, Cremonese E, Julitta T, Panigada C, Rossini M, Colombo R (2020b) PRISMA hyperspectral satellite mission: first data on snow in the Alps. Eur Geosci Union 2020:19825
Dozier J, Painter TH (2004) Multispectral and hyperspectral remote sensing of Alpine snow properties. Annu Rev Earth Planet Sci 32(1):465–494. https://doi.org/10.1146/annurev.earth.32.101802.120404
Dumont M, Brun E, Picard G, Michou M, Libois Q, Petit J-R, Geyer M, Morin S, Josse B (2014) Contribution of light-absorbing impurities in snow to Greenland’s darkening since 2009. Nat Geosci 7(7):509–512. https://doi.org/10.1038/ngeo2180
Dumont M, Arnaud L, Picard G, Libois Q, Lejeune Y, Nabat P, Voisin D, Morin S (2017) In situ continuous visible and near-infrared spectroscopy of an alpine snowpack. Cryosphere 11(3):1091–1110. https://doi.org/10.5194/tc-11-1091-2017
Dumont M, Tuzet F, Gascoin S, Picard G, Kutuzov S, Lafaysse M, Cluzet B, Nheili R, Painter TH (2020) Accelerated snow melt in the Russian Caucasus mountains after the Saharan dust outbreak in March 2018. J Geophys Res Earth Surf 125(9). https://doi.org/10.1029/2020jf005641
Evatt GW, Coughlan MJ, Joy KH, Smedley ARD, Connolly PJ, Abrahams ID (2016) A potential hidden layer of meteorites below the ice surface of Antarctica. Nat Commun 71, 7(1):1–8. https://doi.org/10.1038/ncomms10679
Fierce L, Onasch TB, Cappa CD, Mazzoleni C, China S, Bhandari J, Davidovits P, Fischer DA, Helgestad T, Lambe AT, Sedlacek AJ, Smith GD, Wolff L (2020) Radiative absorption enhancements by black carbon controlled by particle-to-particle heterogeneity in composition. Proc Natl Acad Sci 117(10):5196–5203. https://doi.org/10.1073/PNAS.1919723117
Flanner MG, Zender CS, Randerson JT, Rasch PJ (2007) Present-day climate forcing and response from black carbon in snow. J Geophys Res 112(D11):D11202. https://doi.org/10.1029/2006JD008003
Gaffey C, Bhardwaj A (2020) Applications of unmanned aerial vehicles in cryosphere: latest advances and prospects. Remote Sens 12(6). https://doi.org/10.3390/rs12060948
Ganey GQ, Loso MG, Burgess AB, Dial RJ (2017) The role of microbes in snowmelt and radiative forcing on an Alaskan icefield. Nat Geosci 10(10):754–759. https://doi.org/10.1038/ngeo3027
Garzonio R, di Mauro B, Colombo R, Cogliati S (2017) Surface reflectance and sun-induced fluorescence spectroscopy measurements using a small hyperspectral UAS. Remote Sens 9(5):472. https://doi.org/10.3390/rs9050472
Garzonio R, Di Mauro B, Cogliati S, Rossini M, Panigada C, Delmonte B, Maggi V, Colombo R (2018) A novel hyperspectral system for high resolution imaging of ice cores: application to light-absorbing impurities and ice structure. Cold Reg Sci Technol. https://doi.org/10.1016/J.COLDREGIONS.2018.07.005
Gautam R, Hsu NC, Lau WK-M, Yasunari TJ (2013) Satellite observations of desert dust-induced Himalayan snow darkening. Geophys Res Lett 40(5):988–993. https://doi.org/10.1002/grl.50226
Genge MJ, van Ginneken M, Suttle MD, Harvey RP (2018) Accumulation mechanisms of micrometeorites in an ancient supraglacial moraine at Larkman Nunatak, Antarctica. Meteorit Planet Sci 53(10):2051–2066. https://doi.org/10.1111/MAPS.13107
Glasser N, Goodsell B, Copland L, Lawson W (2006) Debris characteristics and ice-shelf dynamics in the ablation region of the McMurdo Ice Shelf, Antarctica. J Glaciol 52(177):223–234. https://doi.org/10.3189/172756506781828692
Goudie AS, Middleton NJ (2006) Desert dust in the global system. Springer, Berlin, Heidelberg
Gray A, Krolikowski M, Fretwell P, Convey P, Peck LS, Mendelova M, Smith AG, Davey MP (2020) Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nat Commun 11(1). https://doi.org/10.1038/s41467-020-16018-w
Green RO, Painter TH, Roberts DA, Dozier J (2006) Measuring the expressed abundance of the three phases of water with an imaging spectrometer over melting snow. Water Resour Res 42(10). https://doi.org/10.1029/2005WR004509
Hadley OL, Kirchstetter TW (2012) Black-carbon reduction of snow albedo. Nat Clim Chang 2(6):437–440. https://doi.org/10.1038/nclimate1433
Hadley OL, Corrigan CE, Kirchstetter TW, Cliff SS, Ramanathan V (2010) Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat. Atmos Chem Phys 10(15):7505–7513. https://doi.org/10.5194/acp-10-7505-2010
Hauber E, Sassenroth C, de Vera J-P, Schmitz N, Jaumann R, Reiss D, Hiesinger H, Johnsson A (2019) Debris flows and water tracks in northern Victoria Land, continental East Antarctica: a new terrestrial analogue site for gullies and recurrent slope lineae on Mars. Geol Soc Spec Publ 467(1):267–287. https://doi.org/10.1144/SP467.12
Hawes I, Jungblut AD, Matys ED, Summons RE (2018) The “Dirty Ice” of the McMurdo Ice Shelf: Analogues for biological oases during the Cryogenian. Geobiology 16:369–377. https://doi.org/10.1111/gbi.12280
He C, Liou K-N, Takano Y (2018) Resolving Size Distribution of Black Carbon Internally Mixed With Snow: Impact on Snow Optical Properties and Albedo. Geophys Res Lett 45(6):2697–2705. https://doi.org/10.1002/2018GL077062
Hoham RW, Remias D (2019) Snow and glacial algae: a review. J Phycol jpy 12952. https://doi.org/10.1111/jpy.12952
Huovinen P, Ramírez J, Gómez I (2018) Remote sensing of albedo-reducing snow algae and impurities in the Maritime Antarctica. ISPRS J Photogramm Remote Sens 146:507–517. https://doi.org/10.1016/J.ISPRSJPRS.2018.10.015
Kang S, Zhang Y, Qian Y, Wang H (2020) A review of black carbon in snow and ice and its impact on the cryosphere. Earth-Sci Rev 210, 103346. https://doi.org/10.1016/j.earscirev.2020.103346
Kassab CM, Licht KJ, Petersson R, Lindbäck K, Graly JA, Kaplan MR (2020) Formation and evolution of an extensive blue ice moraine in central Transantarctic Mountains, Antarctica. J Glaciol 66(255):49–60. https://doi.org/10.1017/JOG.2019.83
Keegan KM, Albert MR, McConnell JR, Baker I (2014) Climate change and forest fires synergistically drive widespread melt events of the Greenland ice sheet. Proc Natl Acad Sci 111(22):7964–7967. https://doi.org/10.1073/PNAS.1405397111
Kokhanovsky A, Rozanov VV, Aoki T, Odermatt D, Brockmann C, Krüger O, Bouvet M, Drusch M, Hori M (2011) Sizing snow grains using backscattered solar light. Int J Remote Sens 32(22):6975–7008. https://doi.org/10.1080/01431161.2011.560621
Kokhanovsky A, Lamare M, Di Mauro B, Picard G, Arnaud L, Dumont M, Tuzet F, Brockmann C, Box JE (2018) On the reflectance spectroscopy of snow. The Cryosphere 12(7). https://doi.org/10.5194/tc-12-2371-2018
Kokhanovsky A, Lamare M, Danne O, Brockmann C, Dumont M, Picard G, Arnaud L, Favier V, Jourdain B, Meur EL, Di Mauro B, Aoki T, Niwano M, Rozanov V, Korkin S, Kipfstuhl S, Freitag J, Hoerhold M, Zuhr A, Vladimirova D, Faber A-K, Steen-Larsen HC, Wahl S, Andersen JK, Vandecrux B, van As D, Mankoff KD, Kern M, Zege E, Box JE (2019) Retrieval of snow properties from the sentinel-3 ocean and land colour instrument. Remote Sens 11(19). https://doi.org/10.3390/rs11192280
Kokhanovsky A, Box JE, Vandecrux B, Mankoff KD, Lamare M, Smirnov A, Kern M (2020) The determination of snow albedo from satellite measurements using fast atmospheric correction technique. Remote Sens 12:234. https://doi.org/10.3390/RS12020234
Kokhanovsky A, Di Mauro B, Garzonio R, Colombo R (2021) Retrieval of dust properties from spectral snow reflectance measurements. Front Environ Sci 9:42. https://doi.org/10.3389/fenvs.2021.644551
Kutuzov S, Legrand M, Preunkert S, Ginot P, Mikhalenko V, Shukurov K, Poliukhov A, Toropov P (2019) The Elbrus (Caucasus, Russia) ice core record—part 2: history of desert dust deposition. Atmos Chem Phys 19(22):14133–14148. https://doi.org/10.5194/acp-19-14133-2019
Lack DA, Cappa CD (2010) Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon. Atmos Chem Phys 10(9):4207–4220. https://doi.org/10.5194/ACP-10-4207-2010
Laskin A, Laskin J, Nizkorodov SA (2015) Chemistry of atmospheric brown carbon. Chem Rev 115(10):4335–4382. https://doi.org/10.1021/CR5006167
Li C, Bosch C, Kang S, Andersson A, Chen P, Zhang Q, Cong Z, Chen B, Qin D, Gustafsson Ö (2016) Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nat Commun 7:12574. https://doi.org/10.1038/ncomms12574
Li X, Kang S, He X, Qu B, Tripathee L, Jing Z, Paudyal R, Li Y, Zhang Y, Yan F, Li G, Li C (2017a) Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2017.02.169
Li X, Kang S, He X, Qu B, Tripathee L, Jing Z, Paudyal R, Li Y, Zhang Y, Yan F, Li G, Li C (2017b) Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau. Sci Total Environ 587:482–490. https://doi.org/10.1016/j.scitotenv.2017.02.169
Li Y, Kang S, Yan F, Chen J, Wang K, Paudyal R, Liu J, Qin X, Sillanpää M (2019) Cryoconite on a glacier on the north-eastern Tibetan plateau: light-absorbing impurities, albedo and enhanced melting. J Glaciol 65(252):633–644. https://doi.org/10.1017/JOG.2019.41
Libois Q, Picard G, France JL, Arnaud L, Dumont M, Carmagnola CM, King MD (2013) Influence of grain shape on light penetration in snow. Cryosph 7(6):1803–1818. https://doi.org/10.5194/tc-7-1803-2013
Liu D, He C, Schwarz JP, Wang X (2020) Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere. npj Clim Atmos Sci 31, 3(1):1–18. https://doi.org/10.1038/s41612-020-00145-8
Lutz S, McCutcheon J, McQuaid JB, Benning LG (2018) The diversity of ice algal communities on the Greenland ice sheet as revealed by oligotyping. Microb Genom 4(3):e000159. https://doi.org/10.1099/mgen.0.000159
de Magalhães N, Evangelista H, Condom T, Rabatel A, Ginot P (2019) Amazonian biomass burning enhances tropical Andean glaciers melting. Sci Rep 9(1):1–12. https://doi.org/10.1038/s41598-019-53284-1
Maher BA, Prospero JM, Mackie D, Gaiero D, Hesse PP, Balkanski Y (2010) Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Rev 99(1–2):61–97. https://doi.org/10.1016/j.earscirev.2009.12.001
Malinka A (2021) Stereological methods in the theory of light scattering by nonspherical particles. In: Kokhanovsky, A (ed) Springer series in light scattering, vol 6, pp 111–174
McConnell JR, Aristarain AJ, Banta JR, Edwards PR, Simões JC (2007) 20th-Century doubling in dust archived in an Antarctic Peninsula ice core parallels climate change and desertification in South America. Proc Natl Acad Sci 104(14):5743–5748. https://doi.org/10.1073/PNAS.0607657104
McCutcheon J, Lutz S, Williamson C, Cook JM, Tedstone AJ, Vanderstraeten A, Wilson SA, Stockdale A, Bonneville S, Anesio AM, Yallop ML, McQuaid JB, Tranter M, Benning LG (2021) Mineral phosphorus drives glacier algal blooms on the Greenland ice sheet. Nat Commun 121, 12(1):1–11. https://doi.org/10.1038/s41467-020-20627-w
Ménégoz M, Krinner G, Balkanski Y, Boucher O, Cozic A, Lim S, Ginot P, Laj P, Gallée H, Wagnon P, Marinoni A, Jacobi HW (2014) Snow cover sensitivity to black carbon deposition in the Himalayas: from atmospheric and ice core measurements to regional climate simulations. Atmos Chem Phys 14(8):4237–4249. https://doi.org/10.5194/acp-14-4237-2014
Naegeli K, Damm A, Huss M, Schaepman M, Hoelzle M (2015) Imaging spectroscopy to assess the composition of ice surface materials and their impact on glacier mass balance. Remote Sens Environ 168:388–402. https://doi.org/10.1016/j.rse.2015.07.006
Naegeli K, Damm A, Huss M, Wulf H, Schaepman M, Hoelzle M (2017) Cross-comparison of albedo products for glacier surfaces derived from airborne and satellite (Sentinel-2 and Landsat 8) optical data. Remote Sens 9(2):110. https://doi.org/10.3390/rs9020110
Nair VS, Babu SS, Moorthy KK, Sharma AK, Marinoni A (2013) Black carbon aerosols over the Himalayas: direct and surface albedo forcing. Tellus B 65. https://doi.org/10.3402/tellusb.v65i0.19738
Negi HS, Kokhanovsky A (2011) Retrieval of snow grain size and albedo of western Himalayan snow cover using satellite data. Cryosphere 5(4):831–847. https://doi.org/10.5194/tc-5-831-2011
Nolin AW, Dozier J (1993) Estimating snow grain size using AVIRIS data. Remote Sens Environ 44(2–3):231–238. https://doi.org/10.1016/0034-4257(93)90018-S
Nolin AW, Dozier J (2000) A hyperspectral method for remotely sensing the grain size of snow. Remote Sens Environ 74(2):207–216. https://doi.org/10.1016/S0034-4257(00)00111-5
Onuma Y, Takeuchi N, Tanaka S, Nagatsuka N, Niwano M, Aoki T (2020) Physically based model of the contribution of red snow algal cells to temporal changes in albedo in northwest Greenland. Cryosphere 14(6):2087–2101. https://doi.org/10.5194/TC-14-2087-2020
Painter TH, Dozier J (2004) Measurements of the hemispherical-directional reflectance of snow at fine spectral and angular resolution. J Geophys Res Atmos 109. https://doi.org/10.1029/2003JD004458
Painter TH, Duval B, Thomas WH, Mendez M, Heintzelman S, Dozier J (2001) Detection and quantification of snow algae with an airborne imaging spectrometer. Appl Environ Microbiol 67(11):5267–5272. https://doi.org/10.1128/AEM.67.11.5267-5272.2001
Painter TH, Barrett AP, Landry CC, Neff JC, Cassidy MP, Lawrence CR, McBride KE, Farmer GL (2007) Impact of disturbed desert soils on duration of mountain snow cover. Geophys Res Lett 34(12):L12502. https://doi.org/10.1029/2007GL030284
Painter TH, Deems JS, Belnap J, Hamlet AF, Landry CC, Udall B (2010) Response of Colorado River runoff to dust radiative forcing in snow. Proc Natl Acad Sci USA 107(40):17125–30. https://doi.org/10.1073/pnas.0913139107
Painter TH, Skiles SM, Deems JS, Bryant AC, Landry CC (2012a) Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations. Water Resour Res 48(7):n/a–n/a. https://doi.org/10.1029/2012WR011985
Painter TH, Bryant AC, Skiles SM (2012b) Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data. Geophys Res Lett 39(17):n/a–n/a. https://doi.org/10.1029/2012GL052457
Painter TH, Seidel FC, Bryant AC, McKenzie Skiles S, Rittger K (2013) Imaging spectroscopy of albedo and radiative forcing by light-absorbing impurities in mountain snow. J Geophys Res Atmos 118(17):9511–9523. https://doi.org/10.1002/jgrd.5052
Painter TH, Berisford DF, Boardman JW, Bormann KJ, Deems JS, Gehrke F, Hedrick A, Joyce M, Laidlaw R, Marks D, Mattmann C, McGurk B, Ramirez P, Richardson M, Skiles SM, Seidel FC, Winstral A (2016) The airborne snow observatory: fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sens Environ 184:139–152. https://doi.org/10.1016/j.rse.2016.06.018
Pey J, Revuelto J, Moreno N, Alonso-González E, Bartolomé M, Reyes J, Gascoin S, López-Moreno JI (2020) Snow impurities in the central pyrenees: from their geochemical and mineralogical composition towards their impacts on snow albedo. Atmosphere (basel) 11(9):937. https://doi.org/10.3390/atmos11090937
Picard G, Libois Q, Arnaud L, Verin G, Dumont M (2016) Development and calibration of an automatic spectral albedometer to estimate near-surface snow SSA time series. Cryosphere 10(3):1297–1316. https://doi.org/10.5194/tc-10-1297-2016
Polashenski CM, Dibb JE, Flanner MG, Chen JY, Courville ZR, Lai AM, Schauer JJ, Shafer MM, Bergin M (2015) Neither dust nor black carbon causing apparent albedo decline in Greenland’s dry snow zone; implications for MODIS C5 surface reflectance. Geophys Res Lett 42(21):n/a–n/a. https://doi.org/10.1002/2015GL065912
Procházková L, Leya T, Křížková H, Nedbalová L (2019) Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol Ecol 95(6). https://doi.org/10.1093/femsec/fiz064
Pu W, Cui J, Wu D, Shi T, Chen Y, Xing Y, Zhou Y, Wang X (2021) Unprecedented snow darkening and melting in New Zealand due to 2019–2020 Australian wildfires. Fundam Res. https://doi.org/10.1016/j.fmre.2021.04.001
Qu B, Ming J, Kang S-C, Zhang G-S, Li Y-W, Li C-D, Zhao S-Y, Ji Z-M, Cao J-J (2014) The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities. Atmos Chem Phys 14(20):11117–11128. https://doi.org/10.5194/acp-14-11117-2014
Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40(3):259–268. https://doi.org/10.1080/09670260500202148
Remias D, Holzinger A, Aigner S, Lütz C (2012) Ecophysiology and ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high arctic). Polar Biol 35(6):899–908. https://doi.org/10.1007/s00300-011-1135-6
Ridgwell AJ (2002) Dust in the Earth system: the biogeochemical linking of land, air and sea. Philos Trans R Soc Lon Ser A Math Phys Eng Sci 360(1801):2905–2924. https://doi.org/10.1098/RSTA.2002.1096
Romshoo B, Müller T, Pfeifer S, Saturno J, Nowak A, Ciupek K, Quincey P, Wiedensohler A (2021) Radiative properties of coated black carbon aggregates: numerical simulations and radiative forcing estimates. Atmos Chem Phys: 1–24. https://doi.org/10.5194/ACP-2020-1290
Rossini M, Di Mauro B, Garzonio R, Baccolo G, Cavallini G, Mattavelli M, De Amicis M, Colombo R (2018) Rapid melting dynamics of an alpine glacier with repeated UAV photogrammetry. Geomorphology 304. https://doi.org/10.1016/j.geomorph.2017.12.039
Rowe PM, Cordero RR, Warren SG, Stewart E, Doherty SJ, Pankow A, Schrempf M, Casassa G, Carrasco J, Pizarro J, MacDonell S, Damiani A, Lambert F, Rondanelli R, Huneeus N, Fernandoy F, Neshyba S (2019) Black carbon and other light-absorbing impurities in snow in the Chilean Andes. Sci Rep 9(1):1–16. https://doi.org/10.1038/s41598-019-39312-0
Ryan JC, Hubbard A, Stibal M, Irvine-Fynn TD, Cook J, Smith LC, Cameron K, Box J (2018) Dark zone of the Greenland ice sheet controlled by distributed biologically-active impurities. Nat Commun 9(1):1065. https://doi.org/10.1038/s41467-018-03353-2
Saleh R, Hennigan CJ, McMeeking GR, Chuang WK, Robinson ES, Coe H, Donahue NM, Robinson AL (2013) Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. Atmos Chem Phys 13(15):7683–7693. https://doi.org/10.5194/ACP-13-7683-2013
Salzano R, Lanconelli C, Esposito G, Giusto M, Montagnoli M, Salvatori R (2021) On the seasonality of the snow optical behaviour at Ny Ålesund (Svalbard Islands, Norway). Geosciences 11(3):112. https://doi.org/10.3390/GEOSCIENCES11030112
Sarangi C, Qian Y, Rittger K, Leung LR, Chand D, Bormann KJ, Painter TH (2020) Dust dominates high-altitude snow darkening and melt over high-mountain Asia. Nat Clim Chang 1011, 10(11):1045–1051. https://doi.org/10.1038/s41558-020-00909-3
Schaepman-Strub G, Schaepman ME, Painter TH, Dangel S, Martonchik JV (2006) Reflectance quantities in optical remote sensing-definitions and case studies. Remote Sens Environ 103:27–42. https://doi.org/10.1016/j.rse.2006.03.002
Schmitt CG, All JD, Schwarz JP, Arnott WP, Cole RJ, Lapham E, Celestian A (2015) Measurements of light-absorbing particles on the glaciers in the Cordillera Blanca Peru. Cryosphere 9(1):331–340. https://doi.org/10.5194/tc-9-331-2015
Segawa T, Matsuzaki R, Takeuchi N, Akiyoshi A, Navarro F, Sugiyama S, Yonezawa T, Mori H (2018) Bipolar dispersal of red-snow algae. Nat Commun 9(1):3094. https://doi.org/10.1038/s41467-018-05521-w
Shimada R, Takeuchi N, Aoki T (2016) Inter-annual and geographical variations in the extent of bare ice and dark ice on the Greenland ice sheet derived from MODIS satellite images. Front Earth Sci 0, 43. https://doi.org/10.3389/FEART.2016.00043
Skiles SM, Painter TH, Deems JS, Bryant AC, Landry CC (2012) Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates. Water Resour Res 48(7):n/a–n/a. https://doi.org/10.1029/2012WR011986
Skiles SM, Flanner M, Cook JM, Dumont M, Painter TH (2018) Radiative forcing by light-absorbing particles in snow. Nat Clim Chang 1. https://doi.org/10.1038/s41558-018-0296-5
Sodemann H, Palmer AS, Schwierz C, Schwikowski M, Wernli H (2006) The transport history of two Saharan dust events archived in an Alpine ice core. Atmos Chem Phys 6(3):667–688. https://doi.org/10.5194/acp-6-667-2006
Stewart A, Rioux D, Boyer F, Gielly L, Pompanon F, Saillard A, Thuiller W, Valay J-G, Maréchal E, Coissac E (2021) Altitudinal Zonation of Green Algae Biodiversity in the French Alps. Front Plant Sci 0, 1066. https://doi.org/10.3389/FPLS.2021.679428
Stibal M, Box JE, Cameron KA, Langen PL, Yallop ML, Mottram RH, Khan AL, Molotch NP, Chrismas NAM, Calì Quaglia F, Remias D, Smeets CJPP, van den Broeke MR, Ryan JC, Hubbard A, Tranter M, van As D, Ahlstrøm AP (2017) Algae drive enhanced darkening of bare ice on the Greenland ice sheet. Geophys Res Lett 44(22):11,463–11,471. https://doi.org/10.1002/2017GL075958
Sugden D, Hall A (2020) Antarctic blue-ice moraines: Analogue for Northern Hemisphere ice sheets? Quat Sci Rev 249:106620. https://doi.org/10.1016/J.QUASCIREV.2020.106620
Takahashi S, Naruse R, Nakawo M, Mae S (1988) A bare ice field in East Queen Maud Land, Antarctica, caused by horizontal divergence of drifting snow. Ann Glaciol 11:156–160. https://doi.org/10.3189/S0260305500006479
Takeuchi N (2002) Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite. Ann Glaciol 34(1):409–414. https://doi.org/10.3189/172756402781817743
Takeuchi N (2009) Temporal and spatial variations in spectral reflectance and characteristics of surface dust on Gulkana Glacier, Alaska Range. J Glaciol 55:701–709. https://doi.org/10.3189/002214309789470914
Takeuchi N, Koshima S (2004) A snow algal community on Tyndall Glacier in the Southern Patagonia icefield, Chile. Arct Antarct Alp Res. https://doi.org/10.1657/1523-0430(2004)036[0092:ASACOT]2.0.CO;2
Takeuchi N, Kohshima S, Seko K (2001) Structure, Formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier, Arctic. Antarct Alp Res 33(2):115–122. https://doi.org/10.2307/1552211
Takeuchi N, Dial R, Kohshima S, Segawa T, Uetake J (2006) Spatial distribution and abundance of red snow algae on the Harding Icefield, Alaska derived from a satellite image. Geophys Res Lett 33(21). https://doi.org/10.1029/2006GL027819
Tanikawa T, Aoki T, Nishio F (2002) Remote sensing of snow grain-size and impurities from Airborne Multispectral Scanner data using a snow bidirectional reflectance distribution function model. Ann Glaciol 34:74–80. https://doi.org/10.3189/172756402781817437
Tedesco M, Foreman CM, Anton J, Steiner N, Schwartzman T (2013) Comparative analysis of morphological, mineralogical and spectral properties of cryoconite in Jakobshavn Isbrae, Greenland, and Canada Glacier, Antarctica. Ann Glaciol 54(63):147–157. https://doi.org/10.3189/2013AoG63A417
Tedesco M, Doherty S, Fettweis X, Alexander P, Jeyaratnam J, Stroeve J (2016) The darkening of the Greenland ice sheet: trends, drivers, and projections (1981–2100). Cryosphere 10(2):477–496. https://doi.org/10.5194/tc-10-477-2016
Tedstone AJ, Bamber JL, Cook JM, Williamson CJ, Fettweis X, Hodson AJ, Tranter M (2017) Dark ice dynamics of the south-west Greenland ice sheet. Cryosphere 11(6):2491–2506. https://doi.org/10.5194/tc-11-2491-2017
Tedstone AJ, Cook JM, Williamson CJ, Hofer S, McCutcheon J, Irvine-Fynn T, Gribbin T, Tranter M (2020) Algal growth and weathering crust state drive variability in western Greenland ice sheet ice albedo. Cryosphere 14(2):521–538. https://doi.org/10.5194/TC-14-521-2020
Textor C, Schulz M, Guibert S, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Chin M, Dentener F, Diehl T, Easter R, Feichter H, Fillmore D, Ghan S, Ginoux P, Gong S, Grini A, Hendricks J, Horowitz L, Huang P, Isaksen I, Iversen T, Kloster S, Koch D, Kirkevåg A, Kristjansson JE, Krol M, Lauer A, Lamarque JF, Liu X, Montanaro V, Myhre G, Penner J, Pitari G, Reddy S, Seland, Stier P, Takemura T, Tie X (2006) Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys 6(7):1777–1813. https://doi.org/10.5194/ACP-6-1777-2006
Thomas JL, Polashenski CM, Soja AJ, Marelle L, Casey KA, Choi HD, Raut J-C, Wiedinmyer C, Emmons LK, Fast JD, Pelon J, Law KS, Flanner MG, Dibb JE (2017) Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophys Res Lett 44(15):7965–7974. https://doi.org/10.1002/2017GL073701
Tuzet F, Dumont M, Lafaysse M, Picard G, Arnaud L, Voisin D, Lejeune Y, Charrois L, Nabat P, Morin S (2017) A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow. Cryosphere 11(6):2633–2653. https://doi.org/10.5194/tc-11-2633-2017
Tuzet F, Dumont M, Picard G, Lamare M, Voisin D, Nabat P, Lafaysse M, Larue F, Revuelto J, Arnaud L (2020) Quantification of the radiative impact of light-absorbing particles during two contrasted snow seasons at Col du Lautaret (2058 m a.s.l., French Alps). The Cryosphere 14(12):4553–4579. https://doi.org/10.5194/tc-14-4553-2020
Veettil BK, Kamp U (2019) Global disappearance of tropical mountain glaciers: Observations Causes, and Challenge. Geosciences 9(5):196. https://doi.org/10.3390/geosciences9050196
Veettil BK, Wang S, Simões JC, Pereira SFR (2018) Glacier monitoring in the eastern mountain ranges of Bolivia from 1975 to 2016 using Landsat and Sentinel-2 data. Environ Earth Sci 7712, 77(12):1–14. https://doi.org/10.1007/S12665-018-7640-Y
Wang S, Tedesco M, Xu M, Alexander PM (2018) Mapping ice algal blooms in Southwest Greenland from space. Geophys Res Lett. https://doi.org/10.1029/2018GL080455
Wang X, Doherty SJ, Huang J (2013) Black carbon and other light-absorbing impurities in snow across Northern China. J Geophys Res Atmos 118(3):1471–1492. https://doi.org/10.1029/2012JD018291
Warren SG (2013) Can black carbon in snow be detected by remote sensing? J Geophys Res Atmos 118(2):779–786. https://doi.org/10.1029/2012JD018476
Warren SG (2019) Light-absorbing impurities in snow: a personal and historical account. Front Earth Sci 0, 250. https://doi.org/10.3389/FEART.2018.00250
Warren SG, Wiscombe WJ (1980) A model for the spectral albedo of snow. II: snow containing atmospheric aerosols. J Atmos Sci 37:2734–2745. https://doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2
Wientjes IGM, Van de Wal RSW, Reichart GJ, Sluijs A, Oerlemans J (2011) Dust from the dark region in the western ablation zone of the Greenland ice sheet. The Cryosphere 5(3):589–601. https://doi.org/10.5194/tc-5-589-2011
Williamson CJ, Anesio AM, Cook J, Tedstone A, Poniecka E, Holland A, Fagan D, Tranter M, Yallop ML (2018) Ice algal bloom development on the surface of the Greenland ice sheet. FEMS Microbiol Ecol 94(3). https://doi.org/10.1093/femsec/fiy025
Williamson CJ, Cameron KA, Cook JM, Zarsky JD, Stibal M, Edwards A (2019) Glacier algae: a dark past and a darker future. Front Microbiol 10:524. https://doi.org/10.3389/fmicb.2019.00524
Wiscombe WJ, Warren SG (1980) A model for the spectral albedo of snow. I: pure snow. J Atmos Sci 37(12):2712–2733. https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2
Zennaro P, Kehrwald N, McConnell JR, Schüpbach S, Maselli OJ, Marlon J, Vallelonga P, Leuenberger D, Zangrando R, Spolaor A, Borrotti M, Barbaro E, Gambaro A, Barbante C (2014) Fire in ice: Two millennia of boreal forest fire history from the Greenland NEEM ice core. Clim past 10(5):1905–1924. https://doi.org/10.5194/cp-10-1905-2014
Zhang Y, Kang S, Sprenger M, Cong Z, Gao T, Li C, Tao S, Li X, Zhong X, Xu M, Meng W, Neupane B, Qin X, Sillanpää M (2018) Black carbon and mineral dust in snow cover on the Tibetan Plateau. Cryosphere 12(2):413–431. https://doi.org/10.5194/tc-12-413-2018
Acknowledgements
The authors would like to thank Biancamaria Narcisi for providing the image of mineral dust used in Fig. 3, Mirco Bonacorsi for collecting snow algae samples in the Alps and Pierino Bigoni for the image of snow algae used in Fig. 8. Janarjan Bhandari, Swarup China, and Claudio Mazzoleni are acknowledged for the image of Black Carbon used in Fig. 5. We acknowledge Alexander Kokhanovsky for editing this chapter.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Di Mauro, B., Garzonio, R., Baccolo, G., Gilardoni, S., Rossini, M., Colombo, R. (2021). Light-Absorbing Particles in Snow and Ice: A Brief Journey Across Latitudes. In: Kokhanovsky, A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham. https://doi.org/10.1007/978-3-030-87683-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-87683-8_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87682-1
Online ISBN: 978-3-030-87683-8
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)