Abstract
Any novel medical imaging modality that differs from previous protocols e.g. in the number of imaging channels, introduces a new domain that is heterogeneous from previous ones. This common medical imaging scenario is rarely considered in the domain adaptation literature, which handles shifts across domains of the same dimensionality. In our work we rely on stochastic generative modeling to translate across two heterogeneous domains at pixel space and introduce two new loss functions that promote semantic consistency. Firstly, we introduce a semantic cycle-consistency loss in the source domain to ensure that the translation preserves the semantics. Secondly, we introduce a pseudo-labelling loss, where we translate target data to source, label them by a source-domain network, and use the generated pseudo-labels to supervise the target-domain network. Our results show that this allows us to extract systematically better representations for the target domain. In particular, we address the challenge of enhancing performance on VERDICT-MRI, an advanced diffusion-weighted imaging technique, by exploiting labeled mp-MRI data. When compared to several unsupervised domain adaptation approaches, our approach yields substantial improvements, that consistently carry over to the semi-supervised and supervised learning settings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, H.U., et al.: Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389, 815–822 (2017)
Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., Ben Ayed, I.: Source-relaxed domain adaptation for image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 490–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_48
Cai, J., Zhang, Z., Cui, L., Zheng, Y., Yang, L.: Towards cross-modal organ translation and segmentation: a cycle and shape consistent generative adversarial network. MedIA 52, 174–184 (2019)
Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. In: AAAI (2019)
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Chiou, E., Giganti, F., Bonet-Carne, E., Punwani, S., Kokkinos, I., Panagiotaki, E.: Prostate cancer classification on VERDICT DW-MRI using convolutional neural networks. In: MLMI (2018)
Chiou, E., Giganti, F., Punwani, S., Kokkinos, I., Panagiotaki, E.: Automatic classification of benign and malignant prostate lesions: a comparison using VERDICT DW-MRI and ADC maps. In: ISMRM (2019)
Chiou, E., Giganti, F., Punwani, S., Kokkinos, I., Panagiotaki, E.: Domain adaptation for prostate lesion segmentation on VERDICT-MRI. In: ISMRM (2020)
Chiou, E., Giganti, F., Punwani, S., Kokkinos, I., Panagiotaki, E.: Harnessing uncertainty in domain adaptation for MRI prostate lesion segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 510–520. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_50
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)
Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11
Jiang, J., et al.: Tumor-aware, adversarial domain adaptation from CT to MRI for lung cancer segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 777–785. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_86
Johnston, E., Chan, R.W., Stevens, N., Atkinson, D., Punwani, S., Hawkes, D.J., Alexander, D.C.: Optimised VERDICT MRI protocol for prostate cancer characterisation. In: ISMRM (2015)
Johnston, E.W., et al.: VERDICT-MRI for prostate cancer: intracellular volume fraction versus apparent diffusion coefficient. Radiology 291, 391–397 (2019)
Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: IPMI (2017)
Li, K., Wang, S., Yu, L., Heng, P.-A.: Dual-teacher: integrating intra-domain and inter-domain teachers for annotation-efficient cardiac segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 418–427. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_41
Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., Huisman, H.: Computer-aided detection of prostate cancer in MRI. TMI 33, 1083–1092 (2014)
Ouyang, C., Kamnitsas, K., Biffi, C., Duan, J., Rueckert, D.: Data efficient unsupervised domain adaptation for cross-modality image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 669–677. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_74
Panagiotaki, E., et al.: Microstructural characterization of normal and malignant human prostate tissue with vascular, extracellular, and restricted diffusion for cytometry in tumours magnetic resonance imaging. Investigate Radiol. 50, 218–227 (2015)
Panagiotaki, E., et al.: Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 74, 1902–1912 (2014)
Paszke, A., et al.: Automatic differentiation in PyTorch. In: Autodiff Workshop, NIPS (2017)
Ren, J., Hacihaliloglu, I., Singer, E.A., Foran, D.J., Qi, X.: Adversarial domain adaptation for classification of prostate histopathology whole-slide images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 201–209. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_23
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Improved texture networks: maximizing quality and diversity in feed-forward stylization and texture synthesis. In: CVPR (2017)
Valindria, V., Palombo, M., Chiou, E., Singh, S., Punwani, S., Panagiotaki, E.: Synthetic q-space learning with deep regression networks for prostate cancer characterisation with verdict. In: ISBI (2021)
Vu, T.H., Jain, H., Bucher, M., Cord, M., Perez, P.: ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR (2019)
Yang, J., Dvornek, N.C., Zhang, F., Chapiro, J., Lin, M.D., Duncan, J.S.: Unsupervised domain adaptation via disentangled representations: application to cross-modality liver segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 255–263. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_29
Zeng, G., et al.: Entropy guided unsupervised domain adaptation for cross-center hip cartilage segmentation from MRI. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention. MICCAI 2020. LNCS, vol. 12261, pp. 447–456. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_44
Zhang, Y., Miao, S., Mansi, T., Liao, R.: Task driven generative modeling for unsupervised domain adaptation: application to X-ray image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 599–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_67
Zhang, Z., Yang, L., Zheng, Y.: Translating and segmenting multimodal medical volumes with cycle and shape consistency generative adversarial network. In: CVPR (2018)
Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chiou, E., Giganti, F., Punwani, S., Kokkinos, I., Panagiotaki, E. (2021). Unsupervised Domain Adaptation with Semantic Consistency Across Heterogeneous Modalities for MRI Prostate Lesion Segmentation. In: Albarqouni, S., et al. Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health. DART FAIR 2021 2021. Lecture Notes in Computer Science(), vol 12968. Springer, Cham. https://doi.org/10.1007/978-3-030-87722-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-87722-4_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87721-7
Online ISBN: 978-3-030-87722-4
eBook Packages: Computer ScienceComputer Science (R0)