Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Locality-Constrained Collaborative Representation with Multi-resolution Dictionary for Face Recognition

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13019))

Included in the following conference series:

Abstract

Sparse learning methods have drawn considerable attention in face recognition, and there are still some problems need to be further studied. For example, most of the conventional sparse learning methods concentrate only on a single resolution, which neglects the fact that the resolutions of real-world face images are variable when they are captured by different cameras. Although the multi-resolution dictionary learning (MRDL) method considers the problem of image resolution, it takes a lot of training time to learn a concise and reliable dictionary and neglects the local relationship of data. To overcome the above problems, we propose a locality-constrained collaborative representation with multi-resolution dictionary (LCCR-MRD) method for face recognition. First, we extend the traditional collaborative representation based classification (CRC) method to the multi-resolution dictionary case without dictionary learning. Second, the locality relationship characterized by the distance between test sample and training sample is used to learn weight of representation coefficient, and the similar sample is forced to make more contribution to representation. Last, LCCR-MRD has a closed-form solution, which makes it simple. Experiments on five widely-used face databases demonstrate that LCCR-MRD outperforms many state-of-art sparse learning methods. The Matlab codes of LCCR-MRD are publicly available at https://github.com/masterliuhzen/LCCR-MRD.

Z. Liu—The first author is a graduate student.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharon, M., Elad, M., Bruckstein, A.M.: \(k\)-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  2. Abdi, A., Rahmati, M., Ebadzadeh, M.E.: Entropy based dictionary learning for image classification. Pattern Recogn. 110, 107634 (2021)

    Google Scholar 

  3. Bai, T., Li, Y.F., Tang, Y.: Robust visual tracking with structured sparse representation appearance model. Pattern Recogn. 45(6), 2390–2404 (2012)

    Google Scholar 

  4. Li, B., Yuan, Z., Yeda, Z., Aihua, W.: Depth image super-resolution based on joint sparse coding. Pattern Recogn. Lett. 130, 21–29 (2020)

    Google Scholar 

  5. Cai, S., Zhang, L., Zuo, W., Feng, X.: A probabilistic collaborative representation based approach for pattern classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2950–2959 (2016)

    Google Scholar 

  6. Chen, Z., Wu, X., Kittler, J.: A sparse regularized nuclear norm based matrix regression for face recognition with contiguous occlusion. Pattern Recogn. Lett. 125, 494–499 (2019)

    Article  Google Scholar 

  7. Frucci, M., Ramella, G., Baja, G.S.D.: Using resolution pyramids for watershed image segmentation. Image Vis. Comput. 25(6), 1021–1031 (2007)

    Article  Google Scholar 

  8. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition, CVPR, pp. 770–778 (2016)

    Google Scholar 

  10. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07–49, University of Massachusetts, Amherst (October 2007)

    Google Scholar 

  11. Jiang, Z., Lin, Z., Davis, L.S.: Label consistent k-svd: learning a discriminative dictionary for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2651–2664 (2013)

    Article  Google Scholar 

  12. Kang, B., Zhu, W., Liang, D., Chen, M.: Robust visual tracking via nonlocal regularized multi-view sparse representation. Pattern Recogn. 88, 75–89 (2019)

    Article  Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Neural Inf. Process. Syst. 141(5), 1097–1105 (2012)

    Google Scholar 

  14. Lee, K.C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)

    Article  Google Scholar 

  15. Luo, X., Xu, Y., Yang, J.: Multi-resolution dictionary learning for face recognition. Pattern Recogn. 93, 283–292 (2019)

    Article  Google Scholar 

  16. Martínez, A., Benavente, R.: The AR face database: CVC Technical Report 24, pp. 1–8 (1998)

    Google Scholar 

  17. Zhang, Q., Li, B.: Discriminative k-svd for dictionary learning in face recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2691–2698 (2010)

    Google Scholar 

  18. Dehkordi, R.A., Khosravi, H., Ahmadyfard, A.: Single image super resolution based on sparse representation using dictionaries trained with input image patches. IET Image Process. 14(8), 1587–1593 (2020)

    Google Scholar 

  19. Rong, Y., Xiong, S., Gao, Y.: Double graph regularized double dictionary learning for image classification. IEEE Trans. Image Process. 29, 7707–7721 (2020)

    Article  MathSciNet  Google Scholar 

  20. Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: Proceedings of 1994 IEEE Workshop on Applications of Computer Vision, pp. 138–142 (1994)

    Google Scholar 

  21. Shrivastava, A., Pillai, J.K., Patel, V.M., Chellappa, R.: Learning discriminative dictionaries with partially labeled data. In: 19th IEEE International Conference on Image Processing, pp. 3113–3116 (2012)

    Google Scholar 

  22. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression database. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1615–1618 (2003)

    Article  Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition, pp. 1–14 (2015). arXiv:1409.1556v6

  24. Song, X., Chen, Y., Feng, Z., Hu, G., Zhang, T., Wu, X.: Collaborative representation based face classification exploiting block weighted LBP and analysis dictionary learning. Pattern Recogn. 88, 127–138 (2019)

    Article  Google Scholar 

  25. Sun, J., Chen, Q., Sun, J., Zhang, T., Fang, W., Wu, X.: Graph-structured multitask sparsity model for visual tracking. Inf. Sci. 486, 133–147 (2019)

    Article  Google Scholar 

  26. Wang, D., Kong, S.: A classification-oriented dictionary learning model: explicitly learning the particularity and commonality across categories. Pattern Recogn. 47(2), 885–898 (2014)

    Google Scholar 

  27. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  28. Xu, Y., Zhong, Z., Yang, J., You, J., Zhang, D.: A new discriminative sparse representation method for robust face recognition via l2 regularization. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2233–2242 (2017)

    Article  MathSciNet  Google Scholar 

  29. Xu, Y., Li, Z., Zhang, B., Yang, J., You, J.: Sample diversity, representation effectiveness and robust dictionary learning for face recognition. Inf. Sci. 375, 171–182 (2017)

    Article  Google Scholar 

  30. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  31. Yin, H.F., Wu, X.J.: A new feature fusion approach based on LBP and sparse representation and its application to face recognition. In: Multiple Classifier Systems, pp. 364–373 (2013)

    Google Scholar 

  32. Xu, Y., Li, Z., Tian, C., Yang, J.: Multiple vector representations of images and robust dictionary learning. Pattern Recogn. Lett 128, 131–136 (2019)

    Google Scholar 

  33. Zhang, L., Yang, M., Feng, X., Ma, Y., Zhang, D.: Collaborative representation based classification for face recognition. In: Computer Vision and Pattern Recognition, pp. 1–33 (2012)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (62020106012, U1836218, 61672265), the 111 Project of Ministry of Education of China (B12018), and the Natural Science Foundation of Xiaogan, China (XGKJ2020010063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Wu, XJ., Yin, H., Xu, T., Shu, Z. (2021). Locality-Constrained Collaborative Representation with Multi-resolution Dictionary for Face Recognition. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13019. Springer, Cham. https://doi.org/10.1007/978-3-030-88004-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88004-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88003-3

  • Online ISBN: 978-3-030-88004-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics