Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deep Double Center Hashing for Face Image Retrieval

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13020))

Included in the following conference series:

  • 2212 Accesses

Abstract

Hashing is an effective and widely used technology for fast approximate nearest neighbor search in large-scale images. In recent years, it has been combined with a powerful feature learning model, convolutional neural network(CNN), to boost the efficiency of large-scale image retrieval. In this paper, we introduce a new Deep Double Center Hashing (DDCH) network to learn hash codes with higher discrimination between different people and compact hash codes between the same person for large-scale face image retrieval. Our method uses a deep neural network to learn image features as well as hash codes. We use a deep CNN to extract image features and a multi-layer neural network as the hash function. The whole model is trained end-to-end. In order to learn compact and discriminative hash codes, we impose a compact constraint on the codes to force lower intra-class variations of the codes. Our constraint is formulated as a center-loss over the learned codes, which encourages hash codes to be near the hash center of the same class. In addition, new discrete hashing modules and multi-scale fusion are designed to capture discriminative and multi-scale information. We conduct experiments on the most popular datasets, YouTubeFaces and FaceScrub, and demonstrates the efficient performance of DDCH over the state-of-the-art face image hashing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yandex, A.B., Lempitsky, V.: Aggregating local deep features for image retrieval. In: 2015 IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  2. Guo, Y., Ding, G., Han, J.: Robust quantization for general similarity search. IEEE Trans. Image Process. 27(2), 949–963 (2017)

    Article  MathSciNet  Google Scholar 

  3. Wang, J., Liu, W., Kumar, S., Chang, S.F.: Learning to hash for indexing big data–a survey. Proc. IEEE 104(1), 34–57 (2015)

    Article  Google Scholar 

  4. Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for large-scale search. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2393–2406 (2012)

    Article  Google Scholar 

  5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  6. Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval via image representation learning. In: Twenty-eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  7. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 459–468. IEEE (2006)

    Google Scholar 

  8. Xiong, Z., Wu, D., Gu, W., Zhang, H., Li, B., Wang, W.: Deep discrete attention guided hashing for face image retrieval. In: Proceedings of the 2020 International Conference on Multimedia Retrieval, pp. 136–144 (2020)

    Google Scholar 

  9. Lin, J., Li, Z., Tang, J.: Discriminative deep hashing for scalable face image retrieval. In: IJCAI, pp. 2266–2272 (2017)

    Google Scholar 

  10. Jang, Y.K., Jeong, D., Lee, S.H., Cho, N.I.: Deep clustering and block hashing network for face image retrieval. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11366, pp. 325–339. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20876-9_21

    Chapter  Google Scholar 

  11. Weiss, Y., Torralba, A., Fergus, R., et al.: Spectral hashing. In: NIPS, vol. 1, p. 4. Citeseer (2008)

    Google Scholar 

  12. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2012)

    Article  Google Scholar 

  13. Liu, H., Wang, R., Shan, S., Chen, X.: Deep supervised hashing for fast image retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2064–2072 (2016)

    Google Scholar 

  14. Lai, H., Pan, Y., Liu, Y., Yan, S.: Simultaneous feature learning and hash coding with deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3270–3278 (2015)

    Google Scholar 

  15. Wu, G., Han, J., Lin, Z., Ding, G., Zhang, B., Ni, Q.: Joint image-text hashing for fast large-scale cross-media retrieval using self-supervised deep learning. IEEE Trans. Ind. Electron. 66(12), 9868–9877 (2018)

    Article  Google Scholar 

  16. Tang, J., Li, Z., Zhu, X.: Supervised deep hashing for scalable face image retrieval. Pattern Recogn. 75, 25–32 (2018)

    Article  Google Scholar 

  17. Tang, J., Lin, J., Li, Z., Yang, J.: Discriminative deep quantization hashing for face image retrieval. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 6154–6162 (2018)

    Article  Google Scholar 

  18. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv (2014)

    Google Scholar 

  20. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  21. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  22. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched background similarity. In: CVPR 2011, pp. 529–534. IEEE (2011)

    Google Scholar 

  23. Ng, H.W., Winkler, S.: A data-driven approach to cleaning large face datasets. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 343–347. IEEE (2014)

    Google Scholar 

  24. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  25. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, X., Wang, W., Tang, J. (2021). Deep Double Center Hashing for Face Image Retrieval. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13020. Springer, Cham. https://doi.org/10.1007/978-3-030-88007-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88007-1_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88006-4

  • Online ISBN: 978-3-030-88007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics