Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Nodule Synthesis and Selection for Augmenting Chest X-ray Nodule Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Abstract

Nodule detection in chest X-ray (CXR) images is important for early screening of lung cancer. It typically requires a large number of well-annotated data to train an effective nodule detector. However, high-quality annotations are hard to obtain due to the difficulty of locating nodules in CXR images and high cost of recruiting experienced radiologists. To address this issue, we propose an inpainting-based data augmentation (DA) framework, which consists of Nodule Synthesis stage and Nodule Selection stage, to synthesize CXR images with plausible nodules for facilitating the subsequent task of nodule detection. A partial convolutional U-Net is applied in Nodule Synthesis stage, which can offer flexibility to generate nodules at various locations in lungs. Since not all the synthesized CXR images are effective for data augmentation, we introduce Nodule Selection stage to identify efficacious nodules from the synthesized CXR images, to effectively augment the variety of training data for nodule detection. Our experimental results show that our DA framework can produce synthesized CXR images with plausible nodules of high quality, whereas the data augmentation can significantly improve the nodule detection performance.

† Z. Shen and X. Ouyang—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Canc. J. Clin. 68(6), 394–424 (2018)

    Google Scholar 

  2. Shah, P.K., Austin, J.H., et al.: Missed non–small cell lung cancer: radiographic findings of potentially resectable lesions evident only in retrospect. Radiology 226(1), 235–241 (2003)

    Article  Google Scholar 

  3. Sim, Y., Chung, M.J., Kotter, E., et al.: Deep convolutional neural network-based software improves radiologist detection of malignant lung nodules on chest radiographs. Radiology 294(1), 199–209 (2020)

    Article  Google Scholar 

  4. Li, X., Shen, L., Xie, X., et. al.: Multi-resolution convolutional networks for chest x-ray radiograph based lung nodule detection. Artif. Intell. Med. 103, 101744 (2019)

    Google Scholar 

  5. Nam, J.G., Park, S., Hwang, E.J., et al.: Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology 290(1), 218–228 (2019)

    Article  Google Scholar 

  6. Li, Z., Wang, C., Han, M., Xue, Y., Wei, W., Li, L.J., Fei-Fei, L.: Thoracic disease identification and localization with limited supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8290–8299 (2018)

    Google Scholar 

  7. Liu, J., Zhao, G., Fei, Y., Zhang, M., Wang, Y., Yu, Y.: Align, attend and locate: Chest x-ray diagnosis via contrast induced attention network with limited supervision. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 10632–10641 (2019)

    Google Scholar 

  8. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  9. Salehinejad, H., Colak, E., et. al.: Synthesizing chest x-ray pathology for training deep con-volutional neural networks. IEEE Tran. Med. Imaging 38(5), 1197–1206 (2018)

    Google Scholar 

  10. Lin, T.Y., Goyal, P., Girshick, R., et. al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  11. Austin, J.H., Romney, B.M., Goldsmith, L.S.: Missed bronchogenic carcinoma: radio-graphic findings in 27 patients with a potentially resectable lesion evident in retrospect. Radiology 182(1), 115–122 (1992)

    Article  Google Scholar 

  12. Giger, M.L.: Image feature analysis and computer‐aided diagnosis in digital radiography. 3. Automated detection of nodules in peripheral lung fields. Med. Phys. 15(2), 158–166 (1988)

    Google Scholar 

  13. Xu, X., Doi, K., Kobayashi, T., et. al.: Development of an improved cad scheme for automated detection of lung nodules in digital chest images. Med. Phys. 24(9), 1395–1403 (1997)

    Google Scholar 

  14. Chen, S., Suzuki, K.: Computerized detection of lung nodules by means of virtual dual-energy radiography. IEEE Trans. Biomed. Eng. 60(2), 369–378 (2013)

    Article  Google Scholar 

  15. Li, X., Shen, L., Luo, S.: A solitary feature-based lung nodule detection approach for chest X-ray radiographs. IEEE J. Biomed. Health Inform. 22(2), 516–524 (2017)

    Article  Google Scholar 

  16. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  17. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  18. Zhu, J.-Y., Park, T.P., Isola, T., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  19. Gündel, S., Setio, A.A.A., Grbic, S., Maier, A., Comaniciu, D.: Extracting and leveraging nodule features with lung inpainting for local feature augmentation. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 504–512. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_51

    Chapter  Google Scholar 

  20. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  21. J´egou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 11–19 (2017)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  24. Deng, J., Dong W, Socher R, et al: Imagenet: A large-scale hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  25. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  26. Settles, B.: Active learning literature survey. University of Wisconsin-Madison Department of Computer Sciences, Tech. Rep., Santa Cruz (2009)

    Google Scholar 

  27. He, K., Zhang, X., et. al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  28. Laurens, V.D.M., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(2605), 2579–2605 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, Z. et al. (2021). Nodule Synthesis and Selection for Augmenting Chest X-ray Nodule Detection. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13021. Springer, Cham. https://doi.org/10.1007/978-3-030-88010-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88010-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88009-5

  • Online ISBN: 978-3-030-88010-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics