Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cross-Level High-Utility Itemset Mining Using Multi-core Processing

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2021)

Abstract

Among the useful tools for the retail stores to analyze their customer behaviors is through the task of mining high-utility itemset (HUIM), which is to reveal the combinations of items which offer high. However, most of them different abstraction levels of items. The CLH-Miner algorithm was presented to solve this problem. It adopts categorization of items with the HUIM to discover interesting itemsets not contained in traditional HUIM approaches. Whereas CLH-Miner discovers itemsets from different levels of abstraction efficiently, the algorithm is sequential. It cannot, therefore, use powerful, easily available, multi-core processors. This work tackles this drawback through the use of a parallel method called the pCLH-Miner algorithm to significantly reduce mining times. The algorithm proposes a way to split the search space into separate parts and assign them to each different core. The pCLH-miner is shown to high efficiency compared CLH-Miner by experiments on real-world databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., et al.: Mining association rules between sets of items in large databases. ACM SIGMOD Rec. 22(2), 207–216 (1993)

    Article  Google Scholar 

  2. Alias, S., Norwawi, N.M.: pSPADE: mining sequential pattern using personalized support threshold value. In: Proceedings of the International Symposium on Information Technology 2008, ITSim, pp. 1–8 (2008)

    Google Scholar 

  3. Cagliero, L., et al.: Discovering high-utility itemsets at multiple abstraction levels. In: Kirikova, M., et al. (eds.) European Conference on Advances in Databases and Information Systems, pp. 224–234. Springer International Publishing, Cham (2017)

    Google Scholar 

  4. Chen, Y., An, A.: Approximate parallel high utility itemset mining. Big Data Res. 6, 26–42 (2016)

    Article  Google Scholar 

  5. Cong, S., et al.: Parallel mining of closed sequential patterns. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 562–567 (2005)

    Google Scholar 

  6. Fournier-Viger, P., et al.: A survey of itemset mining. Wiley Interdiscip. Rev.: Data Min. Knowl. Disc. 7(4), e1207 (2017)

    MathSciNet  Google Scholar 

  7. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: Faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 83–92. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1_9

    Chapter  Google Scholar 

  8. Fournier-Viger, P., Wang, Y., Lin, J.-W., Luna, J.M., Ventura, S.: Mining Cross-Level High Utility Itemsets. In: Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J. (eds.) IEA/AIE 2020. LNCS (LNAI), vol. 12144, pp. 858–871. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55789-8_73

    Chapter  Google Scholar 

  9. Han, J., et al.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Disc. 8(1), 53–87 (2004)

    Article  MathSciNet  Google Scholar 

  10. Hipp, J., Myka, A., Wirth, R., Güntzer, U.: A new algorithm for faster mining of generalized association rules. In: Żytkow, J.M., Quafafou, M. (eds.) PKDD 1998. LNCS, vol. 1510, pp. 74–82. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0094807

    Chapter  Google Scholar 

  11. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation categories and subject descriptors. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management (2012)

    Google Scholar 

  12. Liu, Y., Liao, W., Choudhary, A.: A twohase algorithm for fast discovery of high utility itemsets. In: Ho, T.B., Cheung, D., Liu, H. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 689–695. Springer Berlin Heidelberg, Berlin, Heidelberg (2005). https://doi.org/10.1007/11430919_79

    Chapter  Google Scholar 

  13. Nguyen, L.T.T., et al.: Mining high-utility itemsets in dynamic profit databases. Knowl.-Based Syst. 175, 130–144 (2019)

    Article  Google Scholar 

  14. Nguyen, N.T.: Consensus system for solving conflicts in distributed systems. Inf. Sci. 147(1), 91–122 (2002)

    Article  MathSciNet  Google Scholar 

  15. Nguyen, N.T.: Using consensus methods for solving conflicts of data in distributed systems. In: Hlaváč, V., Jeffery, K.G., Wiedermann, J. (eds.) SOFSEM 2000. LNCS, vol. 1963, pp. 411–419. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44411-4_30

    Chapter  Google Scholar 

  16. Nguyen, T.D.D., Nguyen, L.T.T., Vo, B.: A parallel algorithm for mining high utility itemsets. In: Świątek, J., Borzemski, L., Wilimowska, Z. (eds.) ISAT 2018. AISC, vol. 853, pp. 286–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99996-8_26

    Chapter  Google Scholar 

  17. Nguyen, T.D.D., Nguyen, L.T.T., Kozierkiewicz, A., Pham, T., Vo, B.: An efficient approach for mining high-utility itemsets from multiple abstraction levels. In: Nguyen, N.T., Chittayasothorn, S., Niyato, D., Trawiński, B. (eds.) ACIIDS 2021. LNCS (LNAI), vol. 12672, pp. 92–103. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73280-6_8

    Chapter  Google Scholar 

  18. Nouioua, M., et al.: TKC: mining top-K cross-level high utility itemsets. In: 2020 International Conference on Data Mining Workshops (ICDMW), pp. 673–682 (2020)

    Google Scholar 

  19. Sethi, K.K., Ramesh, D., Edla, D.R.: P-FHM+: parallel high utility itemset mining algorithm for big data processing. Procedia Comput. Sci. 132, 918–927 (2018)

    Article  Google Scholar 

  20. Srikant, R., Agrawal, R.: Mining generalized association rules. Futur. Gener. Comput. Syst. 13(2–3), 161–180 (1997)

    Article  Google Scholar 

  21. Vo, B., et al.: A multi-core approach to efficiently mining high-utility itemsets in dynamic profit databases. IEEE Access. 8, 85890–85899 (2020)

    Article  Google Scholar 

  22. Vo, B., Le, B.: Fast algorithm for mining generalized association rules. Int. J. Datab. Theor. Appl. 2(3), 19–21 (2009)

    MathSciNet  Google Scholar 

  23. Yao, H., et al.: A foundational approach to mining itemset utilities from databases. In: SIAM International Conference on Data Mining, pp. 482–486 (2004)

    Google Scholar 

  24. Zhu, T., Bai, S.: A parallel mining algorithm for closed sequential patterns. In: Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops/Symposia, AINAW 2007, pp. 392–395 (2007)

    Google Scholar 

  25. Zida, S., Fournier-Viger, P., Lin, J.-W., Wu, C.-W., Tseng, V.S.: EFIM: a fast and memory efficient algorithm for high-utility itemset mining. Knowl. Inf. Syst. 51(2), 595–625 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loan T. T. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tung, N.T., Nguyen, L.T.T., Nguyen, T.D.D., Kozierkiewicz, A. (2021). Cross-Level High-Utility Itemset Mining Using Multi-core Processing. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2021. Lecture Notes in Computer Science(), vol 12876. Springer, Cham. https://doi.org/10.1007/978-3-030-88081-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88081-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88080-4

  • Online ISBN: 978-3-030-88081-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics