Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Ensemble of Convolution Neural Networks for Automatic Tuberculosis Classification

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2021)

Abstract

Tuberculosis (TB) is curable, and millions of deaths could be averted if diagnosed early. One of the sources of screening TB is through a chest X-ray. Still, its success depends on the interpretation of skilled and experienced radiologists, mostly lacking in high TB burden regions. However, with the intervention of a computer-aided detection system, TB can be automatically detected from chest X-rays. This paper presents an Ensemble model based on multiple pre-trained models to detect TB from chest X-rays automatically. The models were trained on the Shenzhen dataset and validated on the Montgomery dataset to achieve good generalization on a new (unseen) dataset. Improved classification accuracy was however achieved through the Ensemble model compared to the individual models. The proposed model indicates the strength of combining multiple models to improve model accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://lhncbc.nlm.nih.gov/publication/pub9931.

References

  1. Ahsan, M., Gomes, R., Denton, A.: Application of a convolutional neural network using transfer learning for tuberculosis detection. In: 2019 IEEE International Conference on Electro Information Technology (EIT), pp. 427–433. IEEE (2019)

    Google Scholar 

  2. Ayaz, M., Shaukat, F., Raja, G.: Ensemble learning based automatic detection of tuberculosis in chest x-ray images using hybrid feature descriptors. Phys. Eng. Sci. Med. 44, 1–12 (2021)

    Article  Google Scholar 

  3. Bloice, M.D., Stocker, C., Holzinger, A.: Augmentor: an image augmentation library for machine learning. arXiv preprint arXiv:1708.04680 (2017)

  4. Cicero, M., et al.: Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Invest. Radiol. 52(5), 281–287 (2017)

    Article  Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Hammen, I.: Tuberculosis mimicking lung cancer. Respir. Med. Case Rep. 16, 45–47 (2015)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Heo, S.J., et al.: Deep learning algorithms with demographic information help to detect tuberculosis in chest radiographs in annual workers’ health examination data. Int. J. Environ. Res. Public Health 16(2), 250 (2019)

    Article  Google Scholar 

  9. Hernández, A., Panizo, Á., Camacho, D.: An ensemble algorithm based on deep learning for tuberculosis classification. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A.J., Menezes, R., Allmendinger, R. (eds.) IDEAL 2019. LNCS, vol. 11871, pp. 145–154. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33607-3_17

    Chapter  Google Scholar 

  10. Hijazi, M.H.A., Hwa, S.K.T., Bade, A., Yaakob, R., Jeffree, M.S.: Ensemble deep learning for tuberculosis detection using chest x-ray and canny edge detected images. IAES Int. J. Artif. Intell. 8(4), 429 (2019)

    Google Scholar 

  11. Hooda, R., Mittal, A., Sofat, S.: Tuberculosis detection from chest radiographs: a comprehensive survey on computer-aided diagnosis techniques. Curr. Med. Imaging 14(4), 506–520 (2018)

    Article  Google Scholar 

  12. Hwang, S., Kim, H.E., Jeong, J., Kim, H.J.: A novel approach for tuberculosis screening based on deep convolutional neural networks. In: Medical imaging 2016: Computer-Aided Diagnosis, vol. 9785, p. 97852W. International Society for Optics and Photonics (2016)

    Google Scholar 

  13. Jaeger, S., Candemir, S., Antani, S., Wáng, Y.X.J., Lu, P.X., Thoma, G.: Two public chest x-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg, 4(6), 475 (2014)

    Google Scholar 

  14. Karnkawinpong, T., Limpiyakorn, Y.: Chest x-ray analysis of tuberculosis by convolutional neural networks with affine transforms. In: Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence, pp. 90–93 (2018)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  16. Kurt, B., Nabiyev, V.V., Turhan, K.: Medical images enhancement by using anisotropic filter and clahe. In: 2012 International Symposium on Innovations in Intelligent Systems and Applications, pp. 1–4. IEEE (2012)

    Google Scholar 

  17. Lopes, U., Valiati, J.F.: Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Comput. Biol. Med. 89, 135–143 (2017)

    Article  Google Scholar 

  18. Meraj, S.S., Yaakob, R., Azman, A., Rum, S.N.M., Nazri, A.: Artificial intelligence in diagnosing tuberculosis: a review. Int. J. Adv. Sci. Eng. Inf. Technol. 9(1), 81–91 (2019)

    Article  Google Scholar 

  19. Oloko-Oba, M., Viriri, S.: Diagnosing tuberculosis using deep convolutional neural network. In: El Moataz, A., Mammass, D., Mansouri, A., Nouboud, F. (eds.) ICISP 2020. LNCS, vol. 12119, pp. 151–161. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51935-3_16

    Chapter  Google Scholar 

  20. Oloko-Oba, M., Viriri, S.: Pre-trained convolutional neural network for the diagnosis of tuberculosis. In: Bebis, G., et al. (eds.) ISVC 2020. LNCS, vol. 12510, pp. 558–569. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64559-5_44

    Chapter  Google Scholar 

  21. Oloko-Oba, M., Viriri, S.: Tuberculosis abnormality detection in chest x-rays: a deep learning approach. In: Chmielewski, L.J., Kozera, R., Orłowski, A. (eds.) ICCVG 2020. LNCS, vol. 12334, pp. 121–132. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59006-2_11

    Chapter  Google Scholar 

  22. Organization, W.H., et al.: Chest radiography in tuberculosis detection: summary of current who recommendations and guidance on programmatic approaches. World Health Organization, Technical report (2016)

    Google Scholar 

  23. Organization, W.H., et al.: Global tuberculosis report 2019: executive summary (2019)

    Google Scholar 

  24. Organization, W.H., et al.: Global tuberculosis report 2020: executive summary (2020)

    Google Scholar 

  25. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  26. Parsons, L.M., et al.: Laboratory diagnosis of tuberculosis in resource-poor countries: challenges and opportunities. Clin. Microbiol. Rev. 24(2), 314–350 (2011)

    Article  Google Scholar 

  27. Pasa, F., Golkov, V., Pfeiffer, F., Cremers, D., Pfeiffer, D.: Efficient deep network architectures for fast chest x-ray tuberculosis screening and visualization. Sci. Rep. 9(1), 1–9 (2019)

    Article  Google Scholar 

  28. Rohilla, A., Hooda, R., Mittal, A.: Tb detection in chest radiograph using deep learning architecture. In: ICETETSM-17, pp. 136–147 (2017)

    Google Scholar 

  29. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. arXiv preprint arXiv:1710.09829 (2017)

  30. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  32. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  33. Van’t Hoog, A., et al.: High sensitivity of chest radiograph reading by clinical officers in a tuberculosis prevalence survey. Int. J. Tuberculosis Lung Dis. 15(10), 1308–1314 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serestina Viriri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oloko-Oba, M., Viriri, S. (2021). Ensemble of Convolution Neural Networks for Automatic Tuberculosis Classification. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2021. Lecture Notes in Computer Science(), vol 12876. Springer, Cham. https://doi.org/10.1007/978-3-030-88081-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88081-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88080-4

  • Online ISBN: 978-3-030-88081-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics