Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DeepMCAT: Large-Scale Deep Clustering for Medical Image Categorization

  • Conference paper
  • First Online:
Deep Generative Models, and Data Augmentation, Labelling, and Imperfections (DGM4MICCAI 2021, DALI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13003))

Abstract

In recent years, the research landscape of machine learning in medical imaging has changed drastically from supervised to semi-, weakly- or unsupervised methods. This is mainly due to the fact that ground-truth labels are time-consuming and expensive to obtain manually. Generating labels from patient metadata might be feasible but it suffers from user-originated errors which introduce biases. In this work, we propose an unsupervised approach for automatically clustering and categorizing large-scale medical image datasets, with a focus on cardiac MR images, and without using any labels. We investigated the end-to-end training using both class-balanced and imbalanced large-scale datasets. Our method was able to create clusters with high purity and achieved over 0.99 cluster purity on these datasets. The results demonstrate the potential of the proposed method for categorizing unstructured large medical databases, such as organizing clinical PACS systems in hospitals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, E., Kumar, A., Feng, D., Fulham, M., Kim, J.: Unsupervised feature learning with k-means and an ensemble of deep convolutional neural networks for medical image classification. arXiv preprint arXiv:1906.03359 (2019)

  2. Bai, W., et al.: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson. 20(1), 65 (2018). https://doi.org/10.1186/s12968-018-0471-x

    Article  Google Scholar 

  3. Bai, W., et al.: Self-supervised learning for cardiac MR image segmentation by anatomical position prediction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 541–549. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_60

    Chapter  Google Scholar 

  4. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_9

    Chapter  Google Scholar 

  5. Caron, M., Bojanowski, P., Mairal, J., Joulin, A.: Unsupervised pre-training of image features on non-curated data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2959–2968 (2019)

    Google Scholar 

  6. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. arXiv preprint arXiv:1605.09782 (2016)

  7. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

  8. Gueld, M.O., et al.: Quality of DICOM header information for image categorization. In: Siegel, E.L., Huang, H.K. (eds.) Medical Imaging 2002: PACS and Integrated Medical Information Systems: Design and Evaluation, vol. 4685, pp. 280–287. International Society for Optics and Photonics, SPIE (2002)

    Google Scholar 

  9. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data 7, 535–547 (2019)

    Article  Google Scholar 

  10. Maicas, G., Nguyen, C., Motlagh, F., Nascimento, J.C., Carneiro, G.: Unsupervised task design to meta-train medical image classifiers. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1339–1342. IEEE (2020)

    Google Scholar 

  11. Misra, I., Zitnick, C.L., Mitchell, M., Girshick, R.: Seeing through the human reporting bias: visual classifiers from noisy human-centric labels. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2930–2939 (2016)

    Google Scholar 

  12. Moriya, T., et al.: Unsupervised segmentation of 3d medical images based on clustering and deep representation learning. In: Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 10578, p. 1057820. International Society for Optics and Photonics (2018)

    Google Scholar 

  13. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  14. Pathan, S., Tripathi, A.: Y-Net: biomedical image segmentation and clustering. arXiv preprint arXiv:2004.05698 (2020)

  15. Perkonigg, M., Sobotka, D., Ba-Ssalamah, A., Langs, G.: Unsupervised deep clustering for predictive texture pattern discovery in medical images. arXiv preprint arXiv:2002.03721 (2020)

  16. Petersen, S.E., et al.: UK biobank’s cardiovascular magnetic resonance protocol. J. Cardiovasc. Magn. Reson. 18(1), 1–7 (2015)

    Article  Google Scholar 

  17. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval, vol. 39. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  19. Wang, X., et al.: Unsupervised joint mining of deep features and image labels for large-scale radiology image categorization and scene recognition. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 998–1007. IEEE (2017)

    Google Scholar 

  20. Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5147–5156 (2016)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the UK Research and Innovation London Medical Imaging and Artificial Intelligence Centre for Value Based Healthcare. This research has been conducted using the UK Biobank Resource under Application Number 12579.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turkay Kart .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 950 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kart, T., Bai, W., Glocker, B., Rueckert, D. (2021). DeepMCAT: Large-Scale Deep Clustering for Medical Image Categorization. In: Engelhardt, S., et al. Deep Generative Models, and Data Augmentation, Labelling, and Imperfections. DGM4MICCAI DALI 2021 2021. Lecture Notes in Computer Science(), vol 13003. Springer, Cham. https://doi.org/10.1007/978-3-030-88210-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88210-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88209-9

  • Online ISBN: 978-3-030-88210-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics