Abstract
This paper studies the problem of range analysis for feedforward neural networks, which is a basic primitive for applications such as robustness of neural networks, compliance to specifications and reachability analysis of neural-network feedback systems. Our approach focuses on ReLU (rectified linear unit) feedforward neural nets that present specific difficulties: approaches that exploit derivatives do not apply in general, the number of patterns of neuron activations can be quite large even for small networks, and convex approximations are generally too coarse. In this paper, we employ set-based methods and abstract interpretation that have been very successful in coping with similar difficulties in classical program verification. We present an approach that abstracts ReLU feedforward neural networks using tropical polyhedra. We show that tropical polyhedra can efficiently abstract ReLU activation function, while being able to control the loss of precision due to linear computations. We show how the connection between ReLU networks and tropical rational functions can provide approaches for range analysis of ReLU neural networks. We report on a preliminary evaluation of our approach using a prototype implementation.
E. Goubault—Supported in part by the academic Chair “Engineering of Complex Systems”, Thalès-Dassault Aviation-Naval Group-DGA-Ecole Polytechnique-ENSTA Paris-Télécom Paris, and AID project “Drone validation and swarms of drones”.
S. Sankaranarayanan—Supported by US National Science Foundation (NSF) award # 1932189. All opinions expressed are those of the authors and not necessarily of the sponsors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alemdar, H., Caldwell, N., Leroy, V., Prost-Boucle, A., Pétrot, F.: Ternary neural networks for resource-efficient AI applications. CoRR abs/1609.00222 (2016)
Allamigeon, X., Gaubert, S., Goubault, E.: The tropical double description method. In: 27th International Symposium on Theoretical Aspects of Computer Science, STACS 2010 (2010)
Allamigeon, X.: Static analysis of memory manipulations by abstract interpretation - Algorithmics of tropical polyhedra, and application to abstract interpretation. Ph.D. thesis, École Polytechnique, Palaiseau, France (2009). https://tel.archives-ouvertes.fr/pastel-00005850
Allamigeon, X., Gaubert, S., Goubault, É.: Inferring min and max invariants using max-plus polyhedra. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 189–204. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69166-2_13
Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved geometric path enumeration for verifying ReLU neural networks. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 66–96. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_4
Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.: Measuring neural net robustness with constraints. In: Advances in Neural Information Processing Systems (NIPS) (2016)
Blanchet, B., et al.: A static analyzer for large safety-critical software. In: PLDI, pp. 196–207. ACM Press, June 2003
Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient verification of relu-based neural networks via dependency analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 3291–3299 (2020). https://vas.doc.ic.ac.uk/software/neural/
Bourdoncle, F.: Abstract interpretation by dynamic partitioning. J. Func. Program. 2(4), 407–435 (1992)
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles, California, USA, pp. 238–252, January 1977
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL. ACM (1977)
Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 84–96. POPL 1978, Association for Computing Machinery, New York, NY, USA (1978). https://doi.org/10.1145/512760.512770
Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feedback systems using regressive polynomial rule inference. In: HSCC (2019)
Dutta, S., Chen, X., Jha, S., Sankaranarayanan, S., Tiwari, A.: Sherlock - A tool for verification of neural network feedback systems: demo abstract. In: HSCC (2019)
Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: ATVA (2017)
Evtimov, I., et al..: Robust physical-world attacks on machine learning models. CoRR abs/1707.08945 (2017). http://arxiv.org/abs/1707.08945
Gaubert, S., Katz, R.: The Minkowski theorem for max-plus convex sets. Linear Algebra Appl. 421, 356–369 (2006)
Gawrilow, E., Joswig, M.: polymake: a Framework for Analyzing Convex Polytopes, pp. 43–73. Birkhäuser Basel (2000)
Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.: AI2: safety and robustness certification of neural networks with abstract interpretation. In: Conférence IEEE S&P 2018 (2018)
Gowal, S., et al.: On the effectiveness of interval bound propagation for training verifiably robust models. CoRR abs/1810.12715 (2018). http://arxiv.org/abs/1810.12715
Henriksen, P., Lomuscio, A.R.: Efficient neural network verification via adaptive refinement and adversarial search. In: ECAI. Frontiers in Artificial Intelligence and Applications, vol. 325 (2020)
Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1
Julian, K., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression for aircraft collision avoidance systems. AIAA J. Guidance Control Dyn. (2018). https://arxiv.org/pdf/1810.04240.pdf
Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An efficient SMT solver for verifying deep neural networks. In: CAV 2017 (2017)
Katz, G., et al.: The Marabou framework for verification and analysis of deep neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26
Khedr, H., Ferlez, J., Shoukry, Y.: Effective formal verification of neural networks using the geometry of linear regions (2020)
Li, F., Liu, B.: Ternary weight networks. CoRR abs/1605.04711 (2016)
Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static analyzers. In: Programming Languages and Systems (2005)
Miné, A.: A new numerical abstract domain based on difference-bound matrices. In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44978-7_10
Miné, A.: The octagon abstract domain. High. Order Symb. Comput. 19(1), 31–100 (2006)
Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.: Precise multi-neuron abstractions for neural network certification (2021)
Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural networks with provable guarantees. In: IJCAI (2018)
Shiqi, W., Pei, K., Justin, W., Yang, J., Jana, S.: Efficient formal safety analysis of neural networks. In: NIPS (2018)
Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective robustness certification
Singh, G., Ganvir, R., Püschel, M., Vechev, M.: Beyond the single neuron convex barrier for neural network certification. In: Advances in Neural Information Processing Systems (NeurIPS) (2019)
Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying neural networks. In: Proceedings ACM Programming Language 3(POPL), January 2019
Singh, G., Gehr, T., Püschel, M., Vechev, M.: Boosting robustness certification of neural networks. In: ICLR (2019)
Szegedy, C., et al.: Intriguing properties of neural networks (2013). https://arxiv.org/abs/1312.6199
Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with mixed integer programming. https://arxiv.org/abs/1711.07356
Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. USENIX Security (2018)
Zhang, H., et al.: Towards stable and efficient training of verifiably robust neural networks. In: ICLR (2020)
Zhang, L., G.Naitzat, Lim, L.H.: Tropical geometry of deep neural networks. In: Proceedings of the 35th International Conference on Machine Learning, vol. 80, pp. 5824–5832. PMLR (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Goubault, E., Palumby, S., Putot, S., Rustenholz, L., Sankaranarayanan, S. (2021). Static Analysis of ReLU Neural Networks with Tropical Polyhedra. In: Drăgoi, C., Mukherjee, S., Namjoshi, K. (eds) Static Analysis. SAS 2021. Lecture Notes in Computer Science(), vol 12913. Springer, Cham. https://doi.org/10.1007/978-3-030-88806-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-88806-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88805-3
Online ISBN: 978-3-030-88806-0
eBook Packages: Computer ScienceComputer Science (R0)