Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Pure View of Ecumenical Modalities

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13038))

Abstract

Recent works about ecumenical systems, where connectives from classical and intuitionistic logics can co-exist in peace, warmed the discussion on proof systems for combining logics. This discussion has been extended to alethic modalities using Simpson’s meta-logical characterization: necessity is independent of the viewer, while possibility can be either intuitionistic or classical. In this work, we propose a pure, label free calculus for ecumenical modalities, \(\mathsf {nEK}\), where exactly one logical operator figures in introduction rules and every basic object of the calculus can be read as a formula in the language of the ecumenical modal logic \(\mathsf {EK}\). We prove that \(\mathsf {nEK}\) is sound and complete w.r.t. the ecumenical birelational semantics and discuss fragments and extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As observed in [Pog09, Lel19], the merge is a “zipping" of the two nested sequents along the path from the root to the hole.

References

  1. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48, 551–577 (2009). https://doi.org/10.1007/s00153-009-0137-3

    Article  Google Scholar 

  2. Bull, R.: Cut elimination for propositional dynamic logic without*. Zeitschr. f. math. Logik und Grundlagen d. Math. 38, 85–100 (1992)

    Google Scholar 

  3. Blackburn, P., de Rijke, M., de Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  4. Chaudhuri, K., Marin, S., Straßburger, L.: Modular focused proof systems for intuitionistic modal logics. In: FSCD 2016, no. 16, pp. 1–18 (2016)

    Google Scholar 

  5. Díaz-Caro, A., Dowek, G.: A new connective in natural deduction, and its application to quantum computing. CoRR, abs/2012.08994 (2020)

    Google Scholar 

  6. Dummett, M.: The Logical Basis of Metaphysics. Harvard University Press, Cambridge (1991)

    Google Scholar 

  7. Fitting, M.: Nested sequents for intuitionistic logics. Notre Dame J. Formal Logic 55(1), 41–61 (2014)

    Article  Google Scholar 

  8. Goré, R., Ramanayake, R.: Labelled tree sequents, tree hypersequents and nested (deep) sequents. Adv. Modal Logic 9, 279–299 (2012)

    Google Scholar 

  9. Girard, J.-Y.: A new constructive logic: classical logic. Math. Struct. Comput. Sci. 1(3), 255–296 (1991)

    Article  Google Scholar 

  10. Girard, J.-Y.: On the unity of logic. Ann. Pure Appl. Logic 59(3), 201–217 (1993)

    Article  Google Scholar 

  11. Ilik, D., Lee, G., Herbelin, H.: Kripke models for classical logic. Ann. Pure Appl. Logic 161(11), 1367–1378 (2010)

    Article  Google Scholar 

  12. Kashima, R.: Cut-free sequent calculi for some tense logics. Stud. Logica 53(1), 119–136 (1994)

    Article  Google Scholar 

  13. Laurent, O.: Étude de la Polarisation en Logique. Ph.D. thesis, Université Aix-Marseille II (2002)

    Google Scholar 

  14. Lellmann, B.: Combining monotone and normal modal logic in nested sequents – with countermodels. In: Cerrito, S., Popescu, A. (eds.) TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 203–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29026-9_12

    Chapter  Google Scholar 

  15. Liang, C., Miller, D.: A focused approach to combining logics. Ann. Pure Appl. Logic 162(9), 679–697 (2011)

    Article  Google Scholar 

  16. Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof systems. Theor. Comput. Sci. 474, 98–116 (2013)

    Article  Google Scholar 

  17. Marin, S., Pereira, L.C., Pimentel, E., Sales, E.: Ecumenical modal logic. In: Martins, M.A., Sedlár, I. (eds.) DaLí 2020. LNCS, vol. 12569, pp. 187–204. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-65840-3_12

    Chapter  Google Scholar 

  18. Olarte, C., Pimentel, E., Rocha, C.: A rewriting logic approach to specification, proof-search, and meta-proofs in sequent systems. CoRR, abs/2101.03113 (2021)

    Google Scholar 

  19. Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic. In: Makinson, D., Malinowski, J., Wansing, H. (eds.) Towards Mathematical Philosophy. TL, vol. 28, pp. 31–51. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-9084-4_3

    Chapter  Google Scholar 

  20. Pimentel, E., Pereira, L.C., de Paiva, V.: An ecumenical notion of entailment. Synthese (2019). https://doi.org/10.1007/s11229-019-02226-5

  21. Pereira, L.C., Rodriguez, R.O.: Normalization, soundness and completeness for the propositional fragment of Prawitz’ ecumenical system. Rev. Port. Filos. 73(3–3), 1153–1168 (2017)

    Google Scholar 

  22. Prawitz, D.: Classical versus intuitionistic logic. Why is this a Proof? Festschrift for Luiz Carlos Pereira, 27, 15–32 (2015)

    Google Scholar 

  23. Plotkin, G.D., Stirling, C.P.: A framework for intuitionistic modal logic. In: Halpern, J.Y. (ed.) 1st Conference on Theoretical Aspects of Reasoning About Knowledge. Morgan Kaufmann, Burlington (1986)

    Google Scholar 

  24. Restall, G.: Comparing Modal Sequent Systems. Draft manuscript (2006)

    Google Scholar 

  25. Sahlqvist, H.: Completeness and correspondence in first and second order semantics for modal logic. In: Kanger, S. (eds.) Proceedings of the Third Scandinavian Logic Symposium, pp. 110–143 (1975)

    Google Scholar 

  26. Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic. Ph.D. thesis, College of Science and Engineering, School of Informatics, University of Edinburgh (1994)

    Google Scholar 

  27. Straßburger, L.: Cut elimination in nested sequents for intuitionistic modal logics. In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 209–224. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37075-5_14

    Chapter  Google Scholar 

  28. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Univ. Press, Cambridge (1996)

    Google Scholar 

Download references

Acknowledgements

This work was partially financed by CNPq, CAPES and by the UK’s EPSRC through research grant EP/S013008/1. We would like to thank the anonymous reviewers for their suggestions and comments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marin, S., Pereira, L.C., Pimentel, E., Sales, E. (2021). A Pure View of Ecumenical Modalities. In: Silva, A., Wassermann, R., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2021. Lecture Notes in Computer Science(), vol 13038. Springer, Cham. https://doi.org/10.1007/978-3-030-88853-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88853-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88852-7

  • Online ISBN: 978-3-030-88853-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics