Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Property-Directed Verification and Robustness Certification of Recurrent Neural Networks

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2021)

Abstract

This paper presents a property-directed approach to verifying recurrent neural networks (RNNs). To this end, we learn a deterministic finite automaton as a surrogate model from a given RNN using active automata learning. This model may then be analyzed using model checking as a verification technique. The term property-directed reflects the idea that our procedure is guided and controlled by the given property rather than performing the two steps separately. We show that this not only allows us to discover small counterexamples fast, but also to generalize them by pumping towards faulty flows hinting at the underlying error in the RNN. We also show that our method can be efficiently used for adversarial robustness certification of RNNs.

The first four authors contributed equally, the remaining authors are ordered alphabetically. This work was partly supported by the PHC PROCOPE 2020 project LeaRNNify (number 44707TK), funded by DAAD and Campus France and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grant number 434592664.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the index of the right congruence associated with L and in the size of the longest counterexample obtained as a reply to an EQ.

  2. 2.

    Available at https://github.com/LeaRNNify/Property-directed-verification.

References

  1. Akintunde, M.E., Kevorchian, A., Lomuscio, A., Pirovano, E.: Verification of RNN-based neural agent-environment systems. In: Proceedings of AAAI 2019, pp. 6006–6013. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33016006

  2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  Google Scholar 

  3. Ayache, S., Eyraud, R., Goudian, N.: Explaining black boxes on sequential data using weighted automata. In: Proceedings of ICGI 2018, Proceedings of Machine Learning Research, vol. 93, pp. 81–103. PMLR (2018)

    Google Scholar 

  4. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  5. Bernardi, O., Giménez, O.: A linear algorithm for the random sampling from regular languages. Algorithmica 62(1–2), 130–145 (2012)

    Article  MathSciNet  Google Scholar 

  6. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the EMNLP, pp. 1724–1734. ACL (2014)

    Google Scholar 

  7. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_15

    Chapter  Google Scholar 

  8. Du, X., Li, Y., Xie, X., Ma, L., Liu, Y., Zhao, J.: Marble: model-based robustness analysis of stateful deep learning systems. In: ASE 2020, pp. 423–435. IEEE (2020)

    Google Scholar 

  9. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neural network verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 43–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_3

    Chapter  MATH  Google Scholar 

  10. Giacomo, G.D., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In: Proceedings of IJCAI 2015, pp. 1558–1564. AAAI Press (2015)

    Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Holme, P.: Temporal networks. In: Encyclopedia of Social Network Analysis and Mining, pp. 2119–2129. Springer, Heidelberg (2014)

    Google Scholar 

  13. Jacoby, Y., Barrett, C.W., Katz, G.: Verifying recurrent neural networks using invariant inference. CoRR abs/2004.02462 (2020)

    Google Scholar 

  14. Keck, C.: Principles of Public Health Practice. Cengage Learning (2002)

    Google Scholar 

  15. Kwiatkowska, M.Z.: Safety verification for deep neural networks with provable guarantees (Invited Paper). In: Proceedings of CONCUR 2019. Leibniz International Proceedings in Informatics (LIPIcs), vol. 140, pp. 1:1–1:5. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

    Google Scholar 

  16. Mayr, F., Visca, R., Yovine, S.: On-the-fly black-box probably approximately correct checking of recurrent neural networks. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2020. LNCS, vol. 12279, pp. 343–363. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57321-8_19

    Chapter  Google Scholar 

  17. Mayr, F., Yovine, S.: Regular inference on artificial neural networks. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2018. LNCS, vol. 11015, pp. 350–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99740-7_25

    Chapter  Google Scholar 

  18. Mayr, F., Yovine, S., Visca, R.: Property checking with interpretable error characterization for recurrent neural networks. Mach. Learn. Knowl. Extr. 3(1), 205–227 (2021)

    Article  Google Scholar 

  19. Merten, M.: Active automata learning for real life applications. Ph.D. thesis, Dortmund University of Technology (2013)

    Google Scholar 

  20. Okudono, T., Waga, M., Sekiyama, T., Hasuo, I.: Weighted automata extraction from recurrent neural networks via regression on state spaces. In: Proceedings of AAAI 2020, pp. 5306–5314. AAAI Press (2020)

    Google Scholar 

  21. Omlin, C.W., Giles, C.L.: Extraction of rules from discrete-time recurrent neural networks. Neural Netw. 9(1), 41–52 (1996)

    Article  Google Scholar 

  22. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Autom. Lang. Comb. 7(2), 225–246 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Ryou, W., Chen, J., Balunovic, M., Singh, G., Dan, A.M., Vechev, M.T.: Fast and effective robustness certification for recurrent neural networks. CoRR abs/2005.13300 (2020)

    Google Scholar 

  24. Schulz, K.U., Mihov, S.: Fast string correction with Levenshtein automata. Int. J. Document Anal. Recogn. 5(1), 67–85 (2002)

    Article  Google Scholar 

  25. Weiss, G., Goldberg, Y., Yahav, E.: Extracting automata from recurrent neural networks using queries and counterexamples. In: Proceedings of ICML 2018. Proceedings of Machine Learning Research, vol. 80, pp. 5244–5253. PMLR (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajarshi Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khmelnitsky, I. et al. (2021). Property-Directed Verification and Robustness Certification of Recurrent Neural Networks. In: Hou, Z., Ganesh, V. (eds) Automated Technology for Verification and Analysis. ATVA 2021. Lecture Notes in Computer Science(), vol 12971. Springer, Cham. https://doi.org/10.1007/978-3-030-88885-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88885-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88884-8

  • Online ISBN: 978-3-030-88885-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics