Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Light and Variable Stiffness Bending Actuator Bionic from Inchworm

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13013))

Included in the following conference series:

  • 4181 Accesses

Abstract

Soft gripper is with many advantages, it can grasp and move fragile objects safely. Soft gripper has a good shape adaptive ability for grasping the irregular objects. The grippers actuated by shape memory alloy (SMA) are with the characteristics of light weight and easy control, but their bending angle is small and grasping ability is very limited. In this paper, we proposed a kind of super lightweight variable stiffness gripper based on the SMA wire, the design principle was inspired by the movement of the inchworm. Compared with the previous soft grippers, the bending theory of the gripper is novel. The gripper is with a larger bending angle, and the characteristics of light weight and simple fabrication structure. The gripper contacted the object at low stiffness and grasped at high stiffness. The experimental results indicated that the gripper could grasp the target object smoothly, and the bending angle and force can adapt to some special situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

1. References

  1. Fitzgerald, S.G., Delaney, G.W., Howard, D.: A review of jamming actuation in soft robotics. Actuators 9(4), 104 (2020)

    Article  Google Scholar 

  2. Shepherd, R.F., Ilievski, F., Choi, W., et al.: Multigait soft robot. Proc. Natl. Acad. Sci. U.S.A. 108(51), 20400–20403 (2011)

    Article  Google Scholar 

  3. Camarillo, D.B., Milne, C.F., Carlson, C.R., et al.: Mechanics modeling of tendon-driven continuum manipulators. IEEE Trans. Robot. 24(6), 1262–1273 (2008)

    Article  Google Scholar 

  4. Shintake, J., Cacucciolo, V., Floreano, D., et al.: Soft robotic grippers. Adv. Mater. 30(29), 1707035.1–1707035.33 (2018)

    Google Scholar 

  5. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., et al.: Soft robotics for chemists† 50(8), 1890–1895 (2011)

    Google Scholar 

  6. Deimel, R., Brock, O.: A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 35(1–3), 161–185 (2016)

    Article  Google Scholar 

  7. Brown, E., Rodenberg, N., et al.: Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. 107(44), 18809–18814 (2010)

    Article  Google Scholar 

  8. Amend, J., Cheng, N., Fakhouri, S., et al.: Soft robotics commercialization: jamming grippers from research to product. Soft Robot 3, 213–222 (2016)

    Article  Google Scholar 

  9. Nicolas Mouazé, B.L.: Deformation modeling of compliant robotic fingers grasping soft object. J. Mech. Robot. 1–17 (2020)

    Google Scholar 

  10. Yu, S., Lee, J., Park, B., Kim, K.: Design of a gripper system for tendon-driven telemanipulators considering semi-automatic spring mechanism and eye-in-hand camera system. J. Mech. Sci. Technol. 31(3), 1437–1446 (2017). https://doi.org/10.1007/s12206-017-0244-8

    Article  Google Scholar 

  11. Gu, G., Jiang, Z., Zhao, R., et al.: Soft wall-climbing robots. Sci. Robot. 3(25), eaat2874 (2018)

    Google Scholar 

  12. Meng, L., Kang, R., Gan, D., et al.: A mechanically intelligent crawling robot driven by shape memory alloy and compliant bistable mechanism. J. Mech. Robot. 12, 061005 (2020)

    Article  Google Scholar 

  13. Leps, T., Hartzell, C., Wereley, N., et al.: Simulation of a magneto-rheological fluid based, jamming, soft gripper using the soft sphere DEM in LIGGGHTS. In: 70th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society (2017)

    Google Scholar 

  14. El-Atab, N., Mishra, R.B., Al-Modaf, F., et al.: Soft actuators for soft robotic applications: a review. Adv. Intell. Syst. 2(10), 2000128 (2020)

    Article  Google Scholar 

  15. Shintake, J., Schubert, B., Rosset, S., et al.: Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, pp. 1097–1102 (2015)

    Google Scholar 

  16. Lee, J.H., Chung, Y.S., Rodrigue, H.: Application of SMA spring tendons for improved grasping performance. Smart Mater. Struct. 28, 035006 (2018)

    Article  Google Scholar 

  17. Li, J., Sun, M., Wu, Z.: Design and fabrication of a low-cost silicone and water-based soft actuator with a high load-to-weight ratio. Soft Robot. 8, 448–461 (2020)

    Article  Google Scholar 

  18. Dong, X., Axinte, D., Palmer, D., et al.: Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines. Robot. Comput. Integr. Manuf. 44(4), 218–229 (2017)

    Article  Google Scholar 

  19. Jin, H., Dong, E., Alici, G., et al.: A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires. Bioinspiration Biomimetics 11(5), 056012 (2016)

    Article  Google Scholar 

  20. Yan, S., Yang, T., Liu, X., et al.: Tactile feedback control for a gripper driven by SMA springs. AIP Adv. 2(3), 032134 (2012)

    Article  Google Scholar 

  21. Li, J., Harada, H.: Modeling of an SMA actuator based on the Liang and Rogers model. Int. J. Appl. Electromagnet. Mech. 43(4), 325–335 (2013)

    Article  Google Scholar 

  22. Rodrigue, H., Wang, W., Kim, D.R., et al.: Curved shape memory alloy-based soft actuators and application to soft gripper. Compos. Struct. 176(9), 398–406 (2017)

    Article  Google Scholar 

  23. Pan, J., Shi, Z.Y., Wang, T.M.: Variable-model SMA-driven spherical robot. Sci. China (Technol. Sci.) 62, 1401–1411 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China (Grant No. 2019YFB1311200) and the National Natural Science Foundation of China (Grant No. U1813221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, J., Yu, J., Cao, S., Li, G., Pei, X. (2021). Light and Variable Stiffness Bending Actuator Bionic from Inchworm. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13013. Springer, Cham. https://doi.org/10.1007/978-3-030-89095-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89095-7_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89094-0

  • Online ISBN: 978-3-030-89095-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics