Abstract
Segmentation of cardiac magnetic resonance images (cMRI) remains a challenging task in the field of scientific research due to its significance in the medical assessment of cardiovascular diseases. Ensuring accurate segmentation of the heart structures, mainly the left ventricle cavity, serves to extract important information and has a major impact on the quantitative analysis of the heart function which helps to conduct the proper diagnosis of doctors. The present paper introduces a simple and efficient U-shaped convolutional neural network aiming to accurately segment the LV from cMR images. We applied our architecture for Left Ventricle (LV) segmentation on cardiac MR images (cMRI), from the Automated Cardiac Diagnosis Challenge (ACDC). Obtained results are promising. This simple model based on CNN has significantly fewer parameters rendering it less demanding in terms of computation. Nevertheless, it has provided accurate segmentation. The tested method achieved LV Dice scores of 0.958 at end-systolic time (ES) and 0.979 at end-diastolic time (ED), which yields a mean Dice score of 0.968 on the ACDC dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Petitjean, C., Dacher, J.-N.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011). https://doi.org/10.1016/j.media.2010.12.004
White, H.D., Norris, R.M., Brown, M.A., Brandt, P.W., Whitlock, R.M., Wild, C.J.: Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76(1), 44–51 (1987). https://doi.org/10.1161/01.CIR.76.1.44
Pluempitiwiriyawej, C., Moura, J.M.F., Lin Wu, Y.-J., Ho, C.: STACS: new active contour scheme for cardiac MR image segmentation. IEEE Trans. Med. Imaging 24(5), 593–603 (2005). https://doi.org/10.1109/TMI.2005.843740
Feng, C., Zhang, S., Zhao, D., Li, C.: Simultaneous extraction of endocardial and epicardial contours of the left ventricle by distance regularized level sets. Med. Phys. 43(6(Part 1)), 2741–2755 (2016)
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation, pp. 3431–3440 (2015). Accessed 28 Oct 2020
Rizwan, I., Haque, I., Neubert, J.: Deep learning approaches to biomedical image segmentation. Inform. Med. Unlocked 18, 100297 (2020)
Jang, Y., Hong, Y., Ha, S., Kim, S., Chang, H.-J.: Automatic segmentation of LV and RV in cardiac MRI. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 161–169. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_17
Khened, M., Alex, V., Krishnamurthi, G.: Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 140–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_15
Isensee, F., Jaeger, P.F., Full, P.M., Wolf, I., Engelhardt, S., Maier-Hein, K.H.: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 120–129. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_13
Yan, W., Wang, Y., van der Geest, R.J., Tao, Q.: Cine MRI analysis by deep learning of optical flow: adding the temporal dimension. Comput. Biol. Med. 111, 103356 (2019). https://doi.org/10.1016/j.compbiomed.2019.103356
He, Y., et al.: Automatic left ventricle segmentation from cardiac magnetic resonance images using a capsule network. J. X-Ray Sci. Technol. 28(3), 541–553 (2020)
Simantiris, G., Tziritas, G.: Cardiac MRI segmentation with a dilated CNN incorporating domain-specific constraints. IEEE J. Sel. Top. Signal Process. 14(6), 1235–1243 (2020). https://doi.org/10.1109/JSTSP.2020.3013351
Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks, pp. 4700–4708 (2017). Accessed 01 May 2021
Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017). https://doi.org/10.1109/TPAMI.2016.2644615
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network, pp. 2881–2890 (2017). Accessed 01 May 2021
He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition, pp. 770–778 (2016). Accessed 02 May 2021
Zhang, J., Du, J., Liu, H., Hou, X., Zhao, Y., Ding, M.: LU-NET: an improved U-Net for ventricular segmentation. IEEE Access 7, 92539–92546 (2019). https://doi.org/10.1109/ACCESS.2019.2925060
Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018). https://doi.org/10.1109/TMI.2018.2837502
Zuiderveld, K.: Contrast limited adaptive histogram equalization. Graph. Gems 4, 474–485 (1994)
Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://arxiv.org/abs/1412.6980. Accessed 03 May 2021
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Boukhris, K., Mahmoudi, R., Abdallah, A.B., AbdelAli, M., Hmida, B., Bedoui, M.H. (2021). U-Shaped Densely Connected Convolutions for Left Ventricle Segmentation from CMR Images. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13052. Springer, Cham. https://doi.org/10.1007/978-3-030-89128-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-89128-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89127-5
Online ISBN: 978-3-030-89128-2
eBook Packages: Computer ScienceComputer Science (R0)