Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

U-Shaped Densely Connected Convolutions for Left Ventricle Segmentation from CMR Images

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2021)

Abstract

Segmentation of cardiac magnetic resonance images (cMRI) remains a challenging task in the field of scientific research due to its significance in the medical assessment of cardiovascular diseases. Ensuring accurate segmentation of the heart structures, mainly the left ventricle cavity, serves to extract important information and has a major impact on the quantitative analysis of the heart function which helps to conduct the proper diagnosis of doctors. The present paper introduces a simple and efficient U-shaped convolutional neural network aiming to accurately segment the LV from cMR images. We applied our architecture for Left Ventricle (LV) segmentation on cardiac MR images (cMRI), from the Automated Cardiac Diagnosis Challenge (ACDC). Obtained results are promising. This simple model based on CNN has significantly fewer parameters rendering it less demanding in terms of computation. Nevertheless, it has provided accurate segmentation. The tested method achieved LV Dice scores of 0.958 at end-systolic time (ES) and 0.979 at end-diastolic time (ED), which yields a mean Dice score of 0.968 on the ACDC dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Petitjean, C., Dacher, J.-N.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011). https://doi.org/10.1016/j.media.2010.12.004

    Article  Google Scholar 

  2. White, H.D., Norris, R.M., Brown, M.A., Brandt, P.W., Whitlock, R.M., Wild, C.J.: Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76(1), 44–51 (1987). https://doi.org/10.1161/01.CIR.76.1.44

    Article  Google Scholar 

  3. Pluempitiwiriyawej, C., Moura, J.M.F., Lin Wu, Y.-J., Ho, C.: STACS: new active contour scheme for cardiac MR image segmentation. IEEE Trans. Med. Imaging 24(5), 593–603 (2005). https://doi.org/10.1109/TMI.2005.843740

    Article  Google Scholar 

  4. Feng, C., Zhang, S., Zhao, D., Li, C.: Simultaneous extraction of endocardial and epicardial contours of the left ventricle by distance regularized level sets. Med. Phys. 43(6(Part 1)), 2741–2755 (2016)

    Article  Google Scholar 

  5. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  6. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  7. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation, pp. 3431–3440 (2015). Accessed 28 Oct 2020

    Google Scholar 

  8. Rizwan, I., Haque, I., Neubert, J.: Deep learning approaches to biomedical image segmentation. Inform. Med. Unlocked 18, 100297 (2020)

    Article  Google Scholar 

  9. Jang, Y., Hong, Y., Ha, S., Kim, S., Chang, H.-J.: Automatic segmentation of LV and RV in cardiac MRI. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 161–169. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_17

    Chapter  Google Scholar 

  10. Khened, M., Alex, V., Krishnamurthi, G.: Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 140–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_15

    Chapter  Google Scholar 

  11. Isensee, F., Jaeger, P.F., Full, P.M., Wolf, I., Engelhardt, S., Maier-Hein, K.H.: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 120–129. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_13

    Chapter  Google Scholar 

  12. Yan, W., Wang, Y., van der Geest, R.J., Tao, Q.: Cine MRI analysis by deep learning of optical flow: adding the temporal dimension. Comput. Biol. Med. 111, 103356 (2019). https://doi.org/10.1016/j.compbiomed.2019.103356

    Article  Google Scholar 

  13. He, Y., et al.: Automatic left ventricle segmentation from cardiac magnetic resonance images using a capsule network. J. X-Ray Sci. Technol. 28(3), 541–553 (2020)

    Article  Google Scholar 

  14. Simantiris, G., Tziritas, G.: Cardiac MRI segmentation with a dilated CNN incorporating domain-specific constraints. IEEE J. Sel. Top. Signal Process. 14(6), 1235–1243 (2020). https://doi.org/10.1109/JSTSP.2020.3013351

    Article  Google Scholar 

  15. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks, pp. 4700–4708 (2017). Accessed 01 May 2021

    Google Scholar 

  16. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017). https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  17. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network, pp. 2881–2890 (2017). Accessed 01 May 2021

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition, pp. 770–778 (2016). Accessed 02 May 2021

    Google Scholar 

  19. Zhang, J., Du, J., Liu, H., Hou, X., Zhao, Y., Ding, M.: LU-NET: an improved U-Net for ventricular segmentation. IEEE Access 7, 92539–92546 (2019). https://doi.org/10.1109/ACCESS.2019.2925060

    Article  Google Scholar 

  20. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018). https://doi.org/10.1109/TMI.2018.2837502

    Article  Google Scholar 

  21. Zuiderveld, K.: Contrast limited adaptive histogram equalization. Graph. Gems 4, 474–485 (1994)

    Article  Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://arxiv.org/abs/1412.6980. Accessed 03 May 2021

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boukhris, K., Mahmoudi, R., Abdallah, A.B., AbdelAli, M., Hmida, B., Bedoui, M.H. (2021). U-Shaped Densely Connected Convolutions for Left Ventricle Segmentation from CMR Images. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13052. Springer, Cham. https://doi.org/10.1007/978-3-030-89128-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89128-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89127-5

  • Online ISBN: 978-3-030-89128-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics