Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive Style Transfer Using SISR

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2021)

Abstract

Style transfer is the process that aims to recreate a given image (target image) with the style of another image (style image). In this work, a new style transfer scheme is proposed that uses a single-image super resolution (SISR) network to increase the resolution of the given target image as well as the style image and perform the transformation process using the pre-trained VGG19 model. The Combination of perceptual loss and total variation loss is used which results in more photo-realistic output. With the change in content weight, the output image contains different semantic information and precise structure of the target image resulting in visually distinguishable results. The generated outputs can be altered accordingly by the user from artistic style to photo-realistic style by changing the weights. Detailed experimentation is done with different target image and style image pairs. The subjective quality of the stylised images is measured. Experimental results show that the quality of the generated image is better than the state of the art existing schemes. This proposed scheme preserves more information from the target image and creates less distortion for all combinations of different types of images. For more effective comparison, the contour of the stylizing images are extracted and also similarity is measured. This experiment shows that the result images have contour closer to the target images, also measured similarity is found maximum which indicates more preservation of semantic information than other existing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, J., Xiong, H., Huan, J., Luo, J.: Ultrafast photorealistic style transfer via neural architecture search. In: AAAI, pp. 10443–10450 (2020)

    Google Scholar 

  2. Anokhin, I., et al.: High-resolution daytime translation without domain labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7488–7497 (2020)

    Google Scholar 

  3. Chang, J.R., Chen, Y.S.: Exploiting spatial relation for reducing distortion in style transfer. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1209–1217 (2021)

    Google Scholar 

  4. Chiu, T.-Y., Gurari, D.: Iterative feature transformation for fast and versatile universal style transfer. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 169–184. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_11

    Chapter  Google Scholar 

  5. Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. arXiv preprint arXiv:1610.07629 (2016)

  6. Gao, W., Li, Y., Yin, Y., Yang, M.H.: Fast video multi-style transfer. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3222–3230 (2020)

    Google Scholar 

  7. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576 (2015)

  8. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  9. Gooch, B., Gooch, A.: Non-photorealistic Rendering. CRC Press, New York (2001)

    Google Scholar 

  10. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  11. Kolkin, N., Salavon, J., Shakhnarovich, G.: Style transfer by relaxed optimal transport and self-similarity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10051–10060 (2019)

    Google Scholar 

  12. Kotovenko, D., Sanakoyeu, A., Ma, P., Lang, S., Ommer, B.: A content transformation block for image style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10032–10041 (2019)

    Google Scholar 

  13. Li, X., Liu, S., Kautz, J., Yang, M.H.: Learning linear transformations for fast arbitrary style transfer. arXiv preprint arXiv:1808.04537 (2018)

  14. Li, Z., Zhou, F., Yang, L., Li, X., Li, J.: Accelerate neural style transfer with super-resolution. Multimed. Tools Appl. 79(7), 4347–4364 (2020)

    Google Scholar 

  15. Liang, Y., Lee, D., Li, Y., Shin, B.S.: Unpaired medical image colorization using generative adversarial network. Multimed. Tools Appl. 1–15 (2021)

    Google Scholar 

  16. Park, D.Y., Lee, K.H.: Arbitrary style transfer with style-attentional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5880–5888 (2019)

    Google Scholar 

  17. Rosin, P., Collomosse, J.: Image and Video-based Artistic Stylisation, vol. 42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4471-4519-6

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015)

    Google Scholar 

  19. Strothotte, T., Schlechtweg, S.: Non-photorealistic Computer Graphics: Modeling, Rendering, and Animation. Morgan Kaufmann, New York (2002)

    Google Scholar 

  20. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  21. Wang, H., Li, Y., Wang, Y., Hu, H., Yang, M.H.: Collaborative distillation for ultra-resolution universal style transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1860–1869 (2020)

    Google Scholar 

  22. Yao, Y., Ren, J., Xie, X., Liu, W., Liu, Y.J., Wang, J.: Attention-aware multi-stroke style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1467–1475 (2019)

    Google Scholar 

  23. Yoo, J., Uh, Y., Chun, S., Kang, B., Ha, J.W.: Photorealistic style transfer via wavelet transforms. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9036–9045 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindita Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, A., Sen, P., Sahu, N. (2021). Adaptive Style Transfer Using SISR. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13052. Springer, Cham. https://doi.org/10.1007/978-3-030-89128-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89128-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89127-5

  • Online ISBN: 978-3-030-89128-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics