Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evacuating from \(\ell _p\) Unit Disks in the Wireless Model

(Extended Abstract)

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2021)

Abstract

The search-type problem of evacuating 2 robots in the wireless model from the (Euclidean) unit disk was first introduced and studied by Czyzowicz et al. [DISC’2014]. Since then, the problem has seen a long list of follow-up results pertaining to variations as well as to upper and lower bound improvements. All established results in the area study this 2-dimensional search-type problem in the Euclidean metric space where the search space, i.e. the unit disk, enjoys significant (metric) symmetries.

We initiate and study the problem of evacuating 2 robots in the wireless model from \(\ell _p\) unit disks, \(p \in [1,\infty )\), where in particular robots’ moves are measured in the underlying metric space. To the best of our knowledge, this is the first study of a search-type problem with mobile agents in more general metric spaces. The problem is particularly challenging since even the circumference of the \(\ell _p\) unit disks have been the subject of technical studies. In our main result, and after identifying and utilizing the very few symmetries of \(\ell _p\) unit disks, we design optimal evacuation algorithms that vary with p. Our main technical contributions are two-fold. First, in our upper bound results, we provide (nearly) closed formulae for the worst case cost of our algorithms. Second, and most importantly, our lower bounds’ arguments reduce to a novel observation in convex geometry which analyzes trade-offs between arc and chord lengths of \(\ell _p\) unit disks as the endpoints of the arcs (chords) change position around the perimeter of the disk, which we believe is interesting in its own right. Part of our argument pertaining to the latter property relies on a computer assisted numerical verification that can be done for non-extreme values of p.

K. Georgiou—Research supported in part by NSERC.

J. Lucier—Research supported by a NSERC USRA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An underlying assumption is also that robots can distinguish points (xy) by their coordinates, and they can move between them at will. As a byproduct, robots have a sense of orientation. This specification was not mentioned explicitly before for the Euclidean space, since all arguments were invariant under rotations (which is not the case any more). However, even in the \(\ell _2\) case this specification was silently assumed by fixing the cost of the optimal offline algorithm to 1 (a searcher that knows the location of the exit goes directly there), hence all previous results were performing competitive analysis by just doing worst case analysis.

  2. 2.

    For arbitrary algorithms one should define the cost as the supremum over all exit placements. Since in Algorithm Wireless-Search\(_p\)(\(\phi \)) the searched space remains contiguous and its boundaries keep expanding with time, the maximum always exists.

References

  1. Acharjee, S., Georgiou, K., Kundu, S., Srinivasan, A.: Lower bounds for shoreline searching with 2 or more robots. In: 23rd OPODIS, volume 153 of LIPIcs, pp. 26:1–26:11. Schloss Dagstuhl - LZI (2019)

    Google Scholar 

  2. Adler, C.L., Tanton, J.: \(\pi \) is the minimum value of Pi. CMJ: Coll. Math. J. 31, 102-106 (2000)

    Google Scholar 

  3. Ahlswede, R., Wegener, I.: Search Problems. Wiley-Interscience, Hoboken (1987)

    MATH  Google Scholar 

  4. Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with obstacles. Algorithmica 32(1), 123–143 (2002). https://doi.org/10.1007/s00453-001-0067-x

    Article  MathSciNet  MATH  Google Scholar 

  5. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Kluwer Academic Publishers, Heidelberg (2002)

    MATH  Google Scholar 

  6. Alpern, S.: Ten open problems in rendezvous search. In: Alpern, S., Fokkink, R., Gąsieniec, L., Lindelauf, R., Subrahmanian, V. (eds.) Search Theory, pp. 223–230. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6825-7_14

    Chapter  MATH  Google Scholar 

  7. Angelopoulos, S., Dürr, C., Lidbetter, T.: The expanding search ratio of a graph. Discret. Appl. Math. 260, 51–65 (2019)

    Article  MathSciNet  Google Scholar 

  8. Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)

    Article  MathSciNet  Google Scholar 

  9. Baston, V.: Some Cinderella Ruckle type games. In: Alpern, S., Fokkink, R., Gąsieniec, L., Lindelauf, R., Subrahmanian, V. (eds.) Search Theory, pp. 85–103. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6825-7_6

    Chapter  Google Scholar 

  10. Baumann, N., Skutella, M.: Earliest arrival flows with multiple sources. Math. Oper. Res. 34(2), 499–512 (2009)

    Article  MathSciNet  Google Scholar 

  11. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964). https://doi.org/10.1007/BF02759737

    Article  MathSciNet  MATH  Google Scholar 

  12. Bellman, R.: An optimal search. SIAM Rev. 5(3), 274–274 (1963)

    Article  Google Scholar 

  13. Bonato, A., Georgiou, K., MacRury, C., Pralat, P.: Probabilistically faulty searching on a half-line. In: 14th LATIN (2020, to appear)

    Google Scholar 

  14. Borowiecki, P., Das, S., Dereniowski, D., Kuszner, Ł: Distributed evacuation in graphs with multiple exits. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 228–241. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6_15

    Chapter  Google Scholar 

  15. Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_10

    Chapter  Google Scholar 

  16. Brandt, S., Foerster, K.-T., Richner, B., Wattenhofer, R.: Wireless evacuation on m rays with k searchers. Theoret. Comput. Sci. 811, 56–69 (2020)

    Article  MathSciNet  Google Scholar 

  17. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces. ACM Comput. Surv. (CSUR) 33(3), 273–321 (2001)

    Article  Google Scholar 

  18. Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46078-8_14

    Chapter  Google Scholar 

  19. Chuangpishit, H., Georgiou, K., Sharma, P.: Average case - worst case tradeoffs for evacuating 2 robots from the disk in the face-to-face model. In: Gilbert, S., Hughes, D., Krishnamachari, B. (eds.) ALGOSENSORS 2018. LNCS, vol. 11410, pp. 62–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14094-6_5

    Chapter  Google Scholar 

  20. Chuangpishit, H., Mehrabi, S., Narayanan, L., Opatrny, J.: Evacuating equilateral triangles and squares in the face-to-face model. Comput. Geom. 89, 101624 (2020). https://doi.org/10.1016/j.comgeo.2020.101624

  21. Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_9

    Chapter  Google Scholar 

  22. Czyzowicz, J., et al.: Evacuation from a disc in the presence of a faulty robot. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 158–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72050-0_10

    Chapter  Google Scholar 

  23. Czyzowicz, J., et al.: Priority evacuation from a disk using mobile robots. In: Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018. LNCS, vol. 11085, pp. 392–407. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01325-7_32

    Chapter  Google Scholar 

  24. Czyzowicz, J., Georgiou, K., Kranakis, E.: Group search and evacuation. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities. Lecture Notes in Computer Science, vol. 11340, pp. 335–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_14

    Chapter  Google Scholar 

  25. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication. Discrete Math. Theoret. Comput. Sci. 22(4) (2020). https://doi.org/10.23638/DMTCS-22-4-4

  26. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Linear search with terrain-dependent speeds. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 430–441. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_36

    Chapter  Google Scholar 

  27. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6_13

    Chapter  Google Scholar 

  28. Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuating two robots from multiple unknown exits in a circle. Theoret. Comput. Sci. 709, 20–30 (2018)

    Article  MathSciNet  Google Scholar 

  29. Czyzowicz, J., et al.: Energy consumption of group search on a line. In: 46th ICALP, volume 132 of LIPIcs, Dagstuhl, Germany, pp. 137:1–137:15. Schloss Dagstuhl-LZI (2019)

    Google Scholar 

  30. Czyzowicz, J., et al.: Priority evacuation from a disk: the case of n =1, 2, 3, vol. 806, pp. 595–616 (2020)

    Google Scholar 

  31. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theoret. Comput. Sci. 361(2), 342–355 (2006)

    Article  MathSciNet  Google Scholar 

  32. Disser, Y., Schmitt, S.: Evacuating two robots from a disk: a second cut. In: Censor-Hillel, K., Flammini, M. (eds.) SIROCCO 2019. LNCS, vol. 11639, pp. 200–214. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24922-9_14

    Chapter  Google Scholar 

  33. Dobrev, S., Královič, R., Pardubská, D.: Improved lower bounds for shoreline search. In: Richa, A.W., Scheideler, C. (eds.) SIROCCO 2020. LNCS, vol. 12156, pp. 80–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54921-3_5

    Chapter  Google Scholar 

  34. Emek, Y., Langner, T., Uitto, J., Wattenhofer, R.: Solving the ANTS problem with asynchronous finite state machines. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 471–482. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7_40

    Chapter  Google Scholar 

  35. Fekete, S., Gray, C., Kröller, A.: Evacuation of rectilinear polygons. In: Wu, W., Daescu, O. (eds.) COCOA 2010. LNCS, vol. 6508, pp. 21–30. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17458-2_3

    Chapter  Google Scholar 

  36. Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with one robot on a disk. In: Chrobak, M., Fernández Anta, A., Gąsieniec, L., Klasing, R. (eds.) ALGOSENSORS 2016. LNCS, vol. 10050, pp. 80–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53058-1_6

    Chapter  Google Scholar 

  37. Georgiou, K., Leizerovich, S., Lucier, J., Kundu, S.: Evacuating from \(\ell _p\) unit disks in the wireless model. CoRR, abs/2108.02367 (2021)

    Google Scholar 

  38. Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with 2 robots on a disk: wireless and face-to-face communication models. Discrete Math. Theoret. Comput. Sci. 21(3) (2019). https://doi.org/10.23638/DMTCS-21-3-20

  39. Georgiou, K., Kranakis, E., Leonardos, N., Pagourtzis, A., Papaioannou, I.: Optimal circle search despite the presence of faulty robots. In: Dressler, F., Scheideler, C. (eds.) ALGOSENSORS 2019. LNCS, vol. 11931, pp. 192–205. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34405-4_11

    Chapter  Google Scholar 

  40. Georgiou, K., Lucier, J.: Weighted group search on a line. In: Pinotti, C.M., Navarra, A., Bagchi, A. (eds.) ALGOSENSORS 2020. LNCS, vol. 12503, pp. 124–139. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62401-9_9

    Chapter  Google Scholar 

  41. Georgiou, K., Kranakis, E., Steau, A.: Searching with advice: robot fence-jumping. J. Inf. Process. 25, 559–571 (2017)

    Google Scholar 

  42. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996)

    Article  MathSciNet  Google Scholar 

  43. Keller, J.B., Vakil, R.: \( \pi _p \), the value of \( \pi \) in \( \ell _p \). Amer. Math. Monthly 116(10), 931–935 (2009)

    Article  MathSciNet  Google Scholar 

  44. Czyzowicz, J., et al.: Time-energy tradeoffs for evacuation by two robots in the wireless model. In: Censor-Hillel, K., Flammini, M. (eds.) SIROCCO 2019. LNCS, vol. 11639, pp. 185–199. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24922-9_13

    Chapter  Google Scholar 

  45. Lamprou, I., Martin, R., Schewe, S.: Fast two-robot disk evacuation with wireless communication. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 1–15. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53426-7_1

    Chapter  Google Scholar 

  46. Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between selection complexity and performance when searching the plane without communication. In: PODC, pp. 252–261. ACM (2014)

    Google Scholar 

  47. López-Ortiz, A., Sweet, G.: Parallel searching on a lattice. In: CCCG, pp. 125–128 (2001)

    Google Scholar 

  48. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Handbook of Computational Geometry, vol. 334, pp. 633–702 (2000)

    Google Scholar 

  49. Nahin, P.: Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press, Princeton (2012)

    Book  Google Scholar 

  50. Pattanayak, D., Ramesh, H., Mandal, P.S.: Chauffeuring a crashed robot from a disk. In: Dressler, F., Scheideler, C. (eds.) ALGOSENSORS 2019. LNCS, vol. 11931, pp. 177–191. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34405-4_10

    Chapter  Google Scholar 

  51. Pattanayak, D., Ramesh, H, Mandal, P.S., Schmid, S.: Evacuating two robots from two unknown exits on the perimeter of a disk with wireless communication. In: 19th ICDCN, pp. 20:1–20:4. ACM (2018)

    Google Scholar 

  52. Richter, W.-D.: Generalized spherical and simplicial coordinates. J. Math. Anal. Appl. 336(2), 1187–1202 (2007)

    Article  MathSciNet  Google Scholar 

  53. Stone, L.: Theory of Optimal Search. Academic Press, New York (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Georgiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Georgiou, K., Leizerovich, S., Lucier, J., Kundu, S. (2021). Evacuating from \(\ell _p\) Unit Disks in the Wireless Model. In: Gąsieniec, L., Klasing, R., Radzik, T. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2021. Lecture Notes in Computer Science(), vol 12961. Springer, Cham. https://doi.org/10.1007/978-3-030-89240-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89240-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89239-5

  • Online ISBN: 978-3-030-89240-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics