Abstract
The search-type problem of evacuating 2 robots in the wireless model from the (Euclidean) unit disk was first introduced and studied by Czyzowicz et al. [DISC’2014]. Since then, the problem has seen a long list of follow-up results pertaining to variations as well as to upper and lower bound improvements. All established results in the area study this 2-dimensional search-type problem in the Euclidean metric space where the search space, i.e. the unit disk, enjoys significant (metric) symmetries.
We initiate and study the problem of evacuating 2 robots in the wireless model from \(\ell _p\) unit disks, \(p \in [1,\infty )\), where in particular robots’ moves are measured in the underlying metric space. To the best of our knowledge, this is the first study of a search-type problem with mobile agents in more general metric spaces. The problem is particularly challenging since even the circumference of the \(\ell _p\) unit disks have been the subject of technical studies. In our main result, and after identifying and utilizing the very few symmetries of \(\ell _p\) unit disks, we design optimal evacuation algorithms that vary with p. Our main technical contributions are two-fold. First, in our upper bound results, we provide (nearly) closed formulae for the worst case cost of our algorithms. Second, and most importantly, our lower bounds’ arguments reduce to a novel observation in convex geometry which analyzes trade-offs between arc and chord lengths of \(\ell _p\) unit disks as the endpoints of the arcs (chords) change position around the perimeter of the disk, which we believe is interesting in its own right. Part of our argument pertaining to the latter property relies on a computer assisted numerical verification that can be done for non-extreme values of p.
K. Georgiou—Research supported in part by NSERC.
J. Lucier—Research supported by a NSERC USRA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
An underlying assumption is also that robots can distinguish points (x, y) by their coordinates, and they can move between them at will. As a byproduct, robots have a sense of orientation. This specification was not mentioned explicitly before for the Euclidean space, since all arguments were invariant under rotations (which is not the case any more). However, even in the \(\ell _2\) case this specification was silently assumed by fixing the cost of the optimal offline algorithm to 1 (a searcher that knows the location of the exit goes directly there), hence all previous results were performing competitive analysis by just doing worst case analysis.
- 2.
For arbitrary algorithms one should define the cost as the supremum over all exit placements. Since in Algorithm Wireless-Search\(_p\)(\(\phi \)) the searched space remains contiguous and its boundaries keep expanding with time, the maximum always exists.
References
Acharjee, S., Georgiou, K., Kundu, S., Srinivasan, A.: Lower bounds for shoreline searching with 2 or more robots. In: 23rd OPODIS, volume 153 of LIPIcs, pp. 26:1–26:11. Schloss Dagstuhl - LZI (2019)
Adler, C.L., Tanton, J.: \(\pi \) is the minimum value of Pi. CMJ: Coll. Math. J. 31, 102-106 (2000)
Ahlswede, R., Wegener, I.: Search Problems. Wiley-Interscience, Hoboken (1987)
Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with obstacles. Algorithmica 32(1), 123–143 (2002). https://doi.org/10.1007/s00453-001-0067-x
Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Kluwer Academic Publishers, Heidelberg (2002)
Alpern, S.: Ten open problems in rendezvous search. In: Alpern, S., Fokkink, R., Gąsieniec, L., Lindelauf, R., Subrahmanian, V. (eds.) Search Theory, pp. 223–230. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6825-7_14
Angelopoulos, S., Dürr, C., Lidbetter, T.: The expanding search ratio of a graph. Discret. Appl. Math. 260, 51–65 (2019)
Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)
Baston, V.: Some Cinderella Ruckle type games. In: Alpern, S., Fokkink, R., Gąsieniec, L., Lindelauf, R., Subrahmanian, V. (eds.) Search Theory, pp. 85–103. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6825-7_6
Baumann, N., Skutella, M.: Earliest arrival flows with multiple sources. Math. Oper. Res. 34(2), 499–512 (2009)
Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964). https://doi.org/10.1007/BF02759737
Bellman, R.: An optimal search. SIAM Rev. 5(3), 274–274 (1963)
Bonato, A., Georgiou, K., MacRury, C., Pralat, P.: Probabilistically faulty searching on a half-line. In: 14th LATIN (2020, to appear)
Borowiecki, P., Das, S., Dereniowski, D., Kuszner, Ł: Distributed evacuation in graphs with multiple exits. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 228–241. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6_15
Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_10
Brandt, S., Foerster, K.-T., Richner, B., Wattenhofer, R.: Wireless evacuation on m rays with k searchers. Theoret. Comput. Sci. 811, 56–69 (2020)
Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces. ACM Comput. Surv. (CSUR) 33(3), 273–321 (2001)
Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46078-8_14
Chuangpishit, H., Georgiou, K., Sharma, P.: Average case - worst case tradeoffs for evacuating 2 robots from the disk in the face-to-face model. In: Gilbert, S., Hughes, D., Krishnamachari, B. (eds.) ALGOSENSORS 2018. LNCS, vol. 11410, pp. 62–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14094-6_5
Chuangpishit, H., Mehrabi, S., Narayanan, L., Opatrny, J.: Evacuating equilateral triangles and squares in the face-to-face model. Comput. Geom. 89, 101624 (2020). https://doi.org/10.1016/j.comgeo.2020.101624
Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_9
Czyzowicz, J., et al.: Evacuation from a disc in the presence of a faulty robot. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 158–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72050-0_10
Czyzowicz, J., et al.: Priority evacuation from a disk using mobile robots. In: Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018. LNCS, vol. 11085, pp. 392–407. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01325-7_32
Czyzowicz, J., Georgiou, K., Kranakis, E.: Group search and evacuation. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities. Lecture Notes in Computer Science, vol. 11340, pp. 335–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_14
Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication. Discrete Math. Theoret. Comput. Sci. 22(4) (2020). https://doi.org/10.23638/DMTCS-22-4-4
Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Linear search with terrain-dependent speeds. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 430–441. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_36
Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6_13
Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuating two robots from multiple unknown exits in a circle. Theoret. Comput. Sci. 709, 20–30 (2018)
Czyzowicz, J., et al.: Energy consumption of group search on a line. In: 46th ICALP, volume 132 of LIPIcs, Dagstuhl, Germany, pp. 137:1–137:15. Schloss Dagstuhl-LZI (2019)
Czyzowicz, J., et al.: Priority evacuation from a disk: the case of n =1, 2, 3, vol. 806, pp. 595–616 (2020)
Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theoret. Comput. Sci. 361(2), 342–355 (2006)
Disser, Y., Schmitt, S.: Evacuating two robots from a disk: a second cut. In: Censor-Hillel, K., Flammini, M. (eds.) SIROCCO 2019. LNCS, vol. 11639, pp. 200–214. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24922-9_14
Dobrev, S., Královič, R., Pardubská, D.: Improved lower bounds for shoreline search. In: Richa, A.W., Scheideler, C. (eds.) SIROCCO 2020. LNCS, vol. 12156, pp. 80–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54921-3_5
Emek, Y., Langner, T., Uitto, J., Wattenhofer, R.: Solving the ANTS problem with asynchronous finite state machines. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 471–482. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7_40
Fekete, S., Gray, C., Kröller, A.: Evacuation of rectilinear polygons. In: Wu, W., Daescu, O. (eds.) COCOA 2010. LNCS, vol. 6508, pp. 21–30. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17458-2_3
Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with one robot on a disk. In: Chrobak, M., Fernández Anta, A., Gąsieniec, L., Klasing, R. (eds.) ALGOSENSORS 2016. LNCS, vol. 10050, pp. 80–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53058-1_6
Georgiou, K., Leizerovich, S., Lucier, J., Kundu, S.: Evacuating from \(\ell _p\) unit disks in the wireless model. CoRR, abs/2108.02367 (2021)
Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with 2 robots on a disk: wireless and face-to-face communication models. Discrete Math. Theoret. Comput. Sci. 21(3) (2019). https://doi.org/10.23638/DMTCS-21-3-20
Georgiou, K., Kranakis, E., Leonardos, N., Pagourtzis, A., Papaioannou, I.: Optimal circle search despite the presence of faulty robots. In: Dressler, F., Scheideler, C. (eds.) ALGOSENSORS 2019. LNCS, vol. 11931, pp. 192–205. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34405-4_11
Georgiou, K., Lucier, J.: Weighted group search on a line. In: Pinotti, C.M., Navarra, A., Bagchi, A. (eds.) ALGOSENSORS 2020. LNCS, vol. 12503, pp. 124–139. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62401-9_9
Georgiou, K., Kranakis, E., Steau, A.: Searching with advice: robot fence-jumping. J. Inf. Process. 25, 559–571 (2017)
Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996)
Keller, J.B., Vakil, R.: \( \pi _p \), the value of \( \pi \) in \( \ell _p \). Amer. Math. Monthly 116(10), 931–935 (2009)
Czyzowicz, J., et al.: Time-energy tradeoffs for evacuation by two robots in the wireless model. In: Censor-Hillel, K., Flammini, M. (eds.) SIROCCO 2019. LNCS, vol. 11639, pp. 185–199. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24922-9_13
Lamprou, I., Martin, R., Schewe, S.: Fast two-robot disk evacuation with wireless communication. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 1–15. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53426-7_1
Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between selection complexity and performance when searching the plane without communication. In: PODC, pp. 252–261. ACM (2014)
López-Ortiz, A., Sweet, G.: Parallel searching on a lattice. In: CCCG, pp. 125–128 (2001)
Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Handbook of Computational Geometry, vol. 334, pp. 633–702 (2000)
Nahin, P.: Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press, Princeton (2012)
Pattanayak, D., Ramesh, H., Mandal, P.S.: Chauffeuring a crashed robot from a disk. In: Dressler, F., Scheideler, C. (eds.) ALGOSENSORS 2019. LNCS, vol. 11931, pp. 177–191. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34405-4_10
Pattanayak, D., Ramesh, H, Mandal, P.S., Schmid, S.: Evacuating two robots from two unknown exits on the perimeter of a disk with wireless communication. In: 19th ICDCN, pp. 20:1–20:4. ACM (2018)
Richter, W.-D.: Generalized spherical and simplicial coordinates. J. Math. Anal. Appl. 336(2), 1187–1202 (2007)
Stone, L.: Theory of Optimal Search. Academic Press, New York (1975)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Georgiou, K., Leizerovich, S., Lucier, J., Kundu, S. (2021). Evacuating from \(\ell _p\) Unit Disks in the Wireless Model. In: Gąsieniec, L., Klasing, R., Radzik, T. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2021. Lecture Notes in Computer Science(), vol 12961. Springer, Cham. https://doi.org/10.1007/978-3-030-89240-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-89240-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89239-5
Online ISBN: 978-3-030-89240-1
eBook Packages: Computer ScienceComputer Science (R0)