Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SIN: Superpixel Interpolation Network

  • Conference paper
  • First Online:
PRICAI 2021: Trends in Artificial Intelligence (PRICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13033))

Included in the following conference series:

Abstract

Superpixels have been widely used in computer vision tasks due to their representational and computational efficiency. Meanwhile, deep learning and end-to-end framework have made great progress in various fields including computer vision. However, existing superpixel algorithms cannot be integrated into subsequent tasks in an end-to-end way. Traditional algorithms and deep learning-based algorithms are two main streams in superpixel segmentation. The former is non-differentiable and the latter needs a non-differentiable post-processing step to enforce connectivity, which constraints the integration of superpixels and downstream tasks. In this paper, we propose a deep learning-based superpixel segmentation algorithm SIN which can be integrated with downstream tasks in an end-to-end way. Owing to some downstream tasks such as visual tracking require real-time speed, the speed of generating superpixels is also important. To remove the post-processing step, our algorithm enforces spatial connectivity from the start. Superpixels are initialized by sampled pixels and other pixels are assigned to superpixels through multiple updating steps. Each step consists of a horizontal and a vertical interpolation, which is the key to enforcing spatial connectivity. Multi-layer outputs of a fully convolutional network are utilized to predict association scores for interpolations. Experimental results show that our approach runs at about 80 fps and performs favorably against state-of-the-art methods. Furthermore, we design a simple but effective loss function which reduces much training time. The improvements of superpixel-based tasks demonstrate the effectiveness of our algorithm. We hope SIN will be integrated into downstream tasks in an end-to-end way and benefit the superpixel-based community. Code is available at: https://github.com/yuanqqq/SIN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Achanta, R., Susstrunk, S.: Superpixels and polygons using simple non-iterative clustering. In: CVPR, pp. 4651–4660, July 2017

    Google Scholar 

  3. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)

    Article  Google Scholar 

  4. Van den Bergh, M., Boix, X., Roig, G., de Capitani, B., Van Gool, L.: SEEDS: superpixels extracted via energy-driven sampling. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 13–26. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_2

    Chapter  Google Scholar 

  5. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111(1), 98–136 (2015)

    Article  Google Scholar 

  6. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  7. Gadde, R., Jampani, V., Kiefel, M., Kappler, D., Gehler, P.V.: Superpixel convolutional networks using bilateral inceptions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_36

    Chapter  Google Scholar 

  8. Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-class segmentation with relative location prior. Int. J. Comput. Vision 80(3), 300–316 (2008)

    Article  Google Scholar 

  9. He, S., Lau, R.W., Liu, W., Huang, Z., Yang, Q.: SuperCNN: a superpixelwise convolutional neural network for salient object detection. Int. J. Comput. Vision 115(3), 330–344 (2015)

    Article  MathSciNet  Google Scholar 

  10. Jampani, V., Sun, D., Liu, M.-Y., Yang, M.-H., Kautz, J.: Superpixel sampling networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 363–380. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_22

    Chapter  Google Scholar 

  11. Li, Z., Chen, J.: Superpixel segmentation using linear spectral clustering. In: CVPR, pp. 1356–1363 (2015)

    Google Scholar 

  12. Liang-Chieh, C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015)

    Google Scholar 

  13. Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel segmentation. In: CVPR, pp. 2097–2104. IEEE (2011)

    Google Scholar 

  14. Liu, Y.J., Yu, C.C., Yu, M.J., He, Y.: Manifold slic: a fast method to compute content-sensitive superpixels. In: CVPR, pp. 651–659 (2016)

    Google Scholar 

  15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  16. Ren, M.: Learning a classification model for segmentation. In: ICCV, pp. 10–17, vol. 1 (2003). https://doi.org/10.1109/ICCV.2003.1238308

  17. Ren, C.Y., Reid, I.: gSLIC: a real-time implementation of slic superpixel segmentation. University of Oxford, Department of Engineering, Technical report, pp. 1–6 (2011)

    Google Scholar 

  18. Sharma, A., Tuzel, O., Liu, M.Y.: Recursive context propagation network for semantic scene labeling. In: NeurIPS, pp. 2447–2455 (2014)

    Google Scholar 

  19. Shi, J., Yan, Q., Xu, L., Jia, J.: Hierarchical image saliency detection on extended CSSD. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 717–729 (2015)

    Article  Google Scholar 

  20. Shu, G., Dehghan, A., Shah, M.: Improving an object detector and extracting regions using superpixels. In: CVPR, pp. 3721–3727 (2013)

    Google Scholar 

  21. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  22. Stutz, D., Hermans, A., Leibe, B.: Superpixels: an evaluation of the state-of-the-art. Comput. Vis. Image Underst. 166, 1–27 (2018)

    Article  Google Scholar 

  23. Tu, W.C., et al.: Learning superpixels with segmentation-aware affinity loss. In: CVPR, pp. 568–576 (2018)

    Google Scholar 

  24. Wang, S., Lu, H., Yang, F., Yang, M.H.: Superpixel tracking. In: ICCV, pp. 1323–1330. IEEE (2011)

    Google Scholar 

  25. Yan, J., Yu, Y., Zhu, X., Lei, Z., Li, S.Z.: Object detection by labeling superpixels. In: CVPR, pp. 5107–5116 (2015)

    Google Scholar 

  26. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: CVPR, pp. 3166–3173 (2013)

    Google Scholar 

  27. Yang, F., Lu, H., Yang, M.H.: Robust superpixel tracking. IEEE Trans. Image Process. 23(4), 1639–1651 (2014)

    Article  MathSciNet  Google Scholar 

  28. Yang, F., Sun, Q., Jin, H., Zhou, Z.: Superpixel segmentation with fully convolutional networks. In: CVPR, pp. 13964–13973 (2020)

    Google Scholar 

  29. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: CVPR, pp. 2814–2821 (2014)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Hubei Provincinal Science and Technology Major Project of China under Grant No. 2020AEA011, the Key Research & Development Plan of Hubei Province of China under Grant No. 2020BAB100, the project of Science, Technology and Innovation Commission of Shenzhen Municipality of China under Grant No. JCYJ20210324120002006 and the Fundamental Research Funds for the Central Universities, HUST: 2020JYCXJJ067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songfeng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, Q., Lu, S., Huang, Y., Sha, W. (2021). SIN: Superpixel Interpolation Network. In: Pham, D.N., Theeramunkong, T., Governatori, G., Liu, F. (eds) PRICAI 2021: Trends in Artificial Intelligence. PRICAI 2021. Lecture Notes in Computer Science(), vol 13033. Springer, Cham. https://doi.org/10.1007/978-3-030-89370-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89370-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89369-9

  • Online ISBN: 978-3-030-89370-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics