Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deep Learning Architectures Applied to Mosquito Count Regressions in US Datasets

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2021)

Abstract

Deep Learning has achieved great successes in various complex tasks such as image classification, detection and natural language processing. This work describes the process of designing and implementing seven deep learning approaches to perform regressions on mosquito populations from a specific region, given co-variables such as humidity, uv-index and precipitation intensity. The implemented approaches were: Recurrent Neural Networks (LSTM), an hybrid deep learning model, and a Variational Autoencoder (VAE) combined with a Multi-Layer Perceptron (MLP) which instead of using normal RGB images, uses satellite images of twelve channels from Copernicus Sentinel-2 mission. The experiments were executed on the Washington Mosquito Dataset, augmented with weather information. For this dataset, an MLP proved to achieve the best results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arredondo-García, J., Méndez-Herrera, A., Medina-Cortina, H.: Arbovirus en latinoamérica. Acta pediátrica de México 37(2), 111–131 (2016). http://dx.doi.org/10.18233/APM37No2pp111-131

  2. Bhatt, S., et al.: The global distribution and burden of dengue. Nature 496, 504–507 (2013). https://doi.org/10.1038/nature12060

  3. D.C. Office of the Chief Technology Officer: Mosquito Washington Dataset (2019). https://opendata.dc.gov/datasets/DCGIS::mosquito-trap-sites/about. Accessed 9 Aug 2020

  4. Christophers, S.R.: Aedes aegypti: the yellow fever mosquito. CUP Archive (1960)

    Google Scholar 

  5. Ferreira, A.G., Fairlie, S., Moreira, L.A.: Insect vectors endosymbionts as solutions against diseases. Curr. Opin. Insect Sci. 40, 56–61 (2020). https://doi.org/10.1016/j.cois.2020.05.014. http://www.sciencedirect.com/science/article/pii/S221457452030078X

  6. Gretton, A., Borgwardt, K.M., Rasch, M., Schökopf, B., Smola, A.J.: A kernel method for the two-sample problem. In: Advances in Neural Information Processing Systems, pp. 513–520 (2007)

    Google Scholar 

  7. Apple Inc: Dark Sky API (2020). https://darksky.net/. Accessed 9 Aug 2020

  8. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2014)

  9. World Weather Online: World Weather Online (2020). https://www.worldweatheronline.com/. Accessed 11 Nov 2020

  10. Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement. arXiv preprint arXiv:1804.02767 (2018)

  11. Sotomayor, L., Vallejo, E., Sánchez Castellanos, H.: Application of a hybrid neural network trained with satellite imagery and weather data to predict mosquito populations based on mosquito trap captures. Ph.D. thesis, Tecnologico de Monterrey, December 2019

    Google Scholar 

  12. Szegedy, C., et al.: Going deeper with convolutions. In: Computer Vision and Pattern Recognition (CVPR) (2015). https://doi.org/10.1109/CVPR.2015.7298594. http://arxiv.org/abs/1409.4842

  13. Weaver, S.C., Charlier, C., Vasilakis, N., Lecuit, M.: Zika, chikungunya, and other emerging vector-borne viral diseases. Annu. Rev. Med. 69(1), 395–408 (2018). https://doi.org/10.1146/annurev-med-050715-105122, pMID: 28846489

  14. World Mosquito Program (WMP): What are mosquito-borne diseases? (2020). https://doi.org/10.1016/j.cppeds.2009.01.001. https://www.worldmosquitoprogram.org/en/learn/mosquito-borne-diseases. Accessed 9 Aug 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Gonzalez-Mendoza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suarez-Ramirez, C.D., Duran-Vega, M.A., Sanchez C., H.M., Gonzalez-Mendoza, M., Chang, L., Marshall, J.M. (2021). Deep Learning Architectures Applied to Mosquito Count Regressions in US Datasets. In: Batyrshin, I., Gelbukh, A., Sidorov, G. (eds) Advances in Computational Intelligence. MICAI 2021. Lecture Notes in Computer Science(), vol 13067. Springer, Cham. https://doi.org/10.1007/978-3-030-89817-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89817-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89816-8

  • Online ISBN: 978-3-030-89817-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics