Abstract
Pancreatic duct dilation indicates a high risk of pancreatic ductal adenocarcinoma (PDAC), the deadliest cancer with a poor prognosis. Segmentation of dilated pancreatic duct from CT taken from patients without PDAC shows the potential to assist the early detection of PDAC. Most current researches include pancreatic duct segmentation as one additional class for patients who have already detected PDAC. However, the dilated pancreatic duct for people who have not yet developed PDAC is typically much smaller, making the segmentation difficult. Deep learning-based segmentation on tiny components is challenging because of the large imbalance between the target object and irrelevant regions. In this work, we explore an attention-guided approach for dilated pancreatic duct segmentation as a screening tool for pre-PDAC patients, enhancing the pancreas regions’ concentration and ignoring the unnecessary features. We employ a multi-scale aggregation to combine the information at different scales to improve the segmentation performance further. Our proposed multi-scale pancreatic attention-guided approach achieved a Dice score of 54.16% on dilated pancreatic duct dataset, which shows a significant improvement over prior techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, L., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: scale-aware semantic image segmentation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3640–3649 (2016). https://doi.org/10.1109/CVPR.2016.396
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Edge, M.D., Hoteit, M., Patel, A.P., Wang, X., Baumgarten, D.A., Cai, Q.: Clinical significance of main pancreatic duct dilation on computed tomography: single and double duct dilation. World J. Gastroenterol.: WJG 13(11), 1701 (2007)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21
Khandelwal, S., Sigal, L.: AttentionRNN: a structured spatial attention mechanism. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference for Learning Representations (2015)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
McFee, B., Salamon, J., Bello, J.P.: Adaptive pooling operators for weakly labeled sound event detection. IEEE/ACM Trans. Audio Speech Lang. Process. 26(11), 2180–2193 (2018). https://doi.org/10.1109/TASLP.2018.2858559
Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016). https://doi.org/10.1109/3DV.2016.79
Mizrahi, J.D., Surana, R., Valle, J.W., Shroff, R.T.: Pancreatic cancer. Lancet 395(10242), 2008–2020 (2020)
Oktay, O., et al.: Attention U-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)
Roth, H.R., Farag, A., Turkbey, E.B., Lu, L., Liu, J., Summers, R.M.: Data from pancreas-CT (2016). https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
Roth, H.R., et al.: A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 417–425. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_48
Roy, A.G., Navab, N., Wachinger, C.: Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 421–429. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_48
Schlemper, J., et al.: Attention-gated networks for improving ultrasound scan plane detection. arXiv preprint arXiv:1804.05338 (2018)
Schlemper, J., et al.: Attention gated networks: learning to leverage salient regions in medical images. Med. Image Anal. 53, 197–207 (2019)
Shen, C., et al.: A cascaded fully convolutional network framework for dilated pancreatic duct segmentation. In: 35th International Congress and Exhibition on Computer Assisted Radiology (2021)
Sinha, A., Dolz, J.: Multi-scale self-guided attention for medical image segmentation. IEEE J. Biomed. Health Inform. 25(1), 121–130 (2021). https://doi.org/10.1109/JBHI.2020.2986926
Tanaka, S., et al.: Main pancreatic duct dilatation: a sign of high risk for pancreatic cancer. Jpn. J. Clin. Oncol. 32(10), 407–411 (2002)
Xia, Y., et al.: Detecting pancreatic ductal adenocarcinoma in multi-phase CT scans via alignment ensemble. In: Martel, A.L. (ed.) MICCAI 2020. LNCS, vol. 12263, pp. 285–295. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_28
Yan, K., Wang, X., Lu, L., Summers, R.M.: DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging 5(3), 1–11 (2018). https://doi.org/10.1117/1.JMI.5.3.036501
Zhou, Y., et al.: Hyper-pairing network for multi-phase pancreatic ductal adenocarcinoma segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 155–163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_18
Acknowledgement
This work was supported by the MEXT/JSPS KAKENHI (894030, 17H00867, 21K19898).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Shen, C. et al. (2021). Attention-Guided Pancreatic Duct Segmentation from Abdominal CT Volumes. In: Oyarzun Laura, C., et al. Clinical Image-Based Procedures, Distributed and Collaborative Learning, Artificial Intelligence for Combating COVID-19 and Secure and Privacy-Preserving Machine Learning. DCL PPML LL-COVID19 CLIP 2021 2021 2021 2021. Lecture Notes in Computer Science(), vol 12969. Springer, Cham. https://doi.org/10.1007/978-3-030-90874-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-90874-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90873-7
Online ISBN: 978-3-030-90874-4
eBook Packages: Computer ScienceComputer Science (R0)