Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Effective Tensor Based PCA Machine Learning Techniques for Glaucoma Detection and ASPP – EffUnet Classification

  • Conference paper
  • First Online:
Health Information Science (HIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13079))

Included in the following conference series:

Abstract

Main problem in current research area focused on generating automatic AI technique to detect bio medical images by slimming the dataset. Reducing the original dataset with actual unwanted noises can accelerate new data which helps to detect diseases with high accuracy. Highest level of accuracy can be achieved only by ensuring accuracy at each level of processing steps. Dataset slimming or reduction is NP hard problems due its resembling variants. In this research work we ensure high accuracy in two phases. In phase one feature selection using Normalized Tensor Tubal PCA (NTT-PCA) method is used. This method is based on tensor with single value decomposition (SVD) for accurate dimensionality reduction problems. The dimensionality reduced output from phase one is further processed for accurate classification in phase two. The classification of affected images is detected using ASPP – EffUnet. The atrous spatial pyramid pooling (ASPP) with efficient convolutional block in Unet is combined to provide ASPP – EffUnet CNN architecture for accurate classification. This two phase model is designed and implemented on benchmark datasets of glaucoma detection. It is processed efficiently by exploiting fundus image in the dataset. We propose novel AI techniques for segmenting the eye discs using EffUnet and perform classification using ASPP-EffUnet techniques. Highest accuracy is achieved by NTT-PCA dimensionality reduction process and ASPP-EffUnet based classification which detects the boundaries of eye cup and optical discs very curiously. Our resulting algorithm “NTT-PCA with ASPP-EffUnet “for dimensionality reduction and classification process which is optimized for reducing computational complexity with existing detection algorithms like PCA-LA-SVM,PCA-ResNet ASPP –Unet. We choose benchmark datasets ORIGA for our experimental analysis. The crucial areas in clinical setup are examined and implemented successfully. The prediction and classification accuracy of proposed technique is achieved nearly 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hached, M., Jbilou, K., Koukouvinos, C., Mitrouli, M.: A multidimensional principal component analysis via the C-Product Golub–Kahan–SVD for classification and face recognition. Mathematics. 9(11), 1249 (2021)

    Article  Google Scholar 

  2. Krishna Adithya, V., et al.: EffUnet-SpaGen: an efficient and spatial generative approach to glaucoma detection. J. Imaging 7(6), 92 (2021)

    Article  Google Scholar 

  3. Divya, L., Jacob, J.: Performance analysis of glaucoma detection approaches from fundus images. Procedia Comput. Sci. 143, 544–551 (2018)

    Article  Google Scholar 

  4. Christopher, M., et al.: Retinal nerve fiber layer features identified by unsupervised machine learning on optical coherence tomography scans predict glaucoma progression. Invest. Ophthalmol. Vis. Sci. 59(7), 2748–2756 (2018)

    Article  Google Scholar 

  5. Wang, Z.-Y., Xia, Q.-M., Yan, J.-W., Xuan, S.-Q., Su, J.-H., Yang, C.-F.: Hyperspectral image classification based on spectral and spatial information using multi-scale ResNet. Appl. Sci. 9(22), 4890 (2019)

    Article  Google Scholar 

  6. Rossetti, L., et al.: Blindness and glaucoma: a multicenter data review from 7 academic eye clinics. PloS one 10(8), e0136632 (2015)

    Google Scholar 

  7. Balyen, L., Peto, T.: Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology. Asia-Pac. J. Ophthalmol. 8(3), 264–272 (2019)

    Google Scholar 

  8. Li, Z., He, Y., Keel, S., Meng, W., Chang, R.T., He, M.: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 125(8), 1199–1206 (2018)

    Article  Google Scholar 

  9. Li, L., Xu, M., Liu, H., Li, Y., Wang, X., Jiang, L., et al.: A large-scale database and a CNN model for attention-based glaucoma detection. IEEE Trans. Med. Imaging 39(2), 413–424 (2019)

    Article  Google Scholar 

  10. MacCormick, I.J., et al.: Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile. PloS one 14(1), e0209409 (2019)

    Google Scholar 

  11. Schmidt-Erfurth, U., Sadeghipour, A., Gerendas, B.S., Waldstein, S.M., Bogunović, H.: Artificial intelligence in retina. Prog. Retin. Eye Res. 67, 1–29 (2018)

    Article  Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol 9351, pp 234-241. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28

  13. Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imaging 37(7), 1597–1605 (2018)

    Article  Google Scholar 

  14. Iglovikov, V., Shvets, A.: TernausNet: U-net with VGG11 encoder pre-trained on imagenet for image segmentation. arXiv prerint. arXiv preprint arXiv:180105746 (2018)

  15. Chaurasia, A., Culurciello, E.: LinkNet: exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE (2017)

    Google Scholar 

  16. Kumar, E.S., Bindu, C.S.: Two-stage framework for optic disc segmentation and estimation of cup-to-disc ratio using deep learning technique. J. Ambient Intell. Humaniz. Comput. 1–13 (2021)

    Google Scholar 

  17. Khan, M.K., Anwar, S.M. (eds.): M-Net with bidirectional ConvLSTM for cup and disc segmentation in fundus images. In: 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE (2021)

    Google Scholar 

  18. Imtiaz, R., Khan, T.M., Naqvi, S.S., Arsalan, M., Nawaz, S.J.: Screening of Glaucoma disease from retinal vessel images using semantic segmentation. Comput. Electr. Eng. 91, 107036 (2021)

    Google Scholar 

  19. Tabassum, M., et al.: CDED-Net: joint segmentation of optic disc and optic cup for glaucoma screening. IEEE Access. 8, 102733–102747 (2020)

    Article  Google Scholar 

  20. Shen, S.Y., et al.: The prevalence and types of glaucoma in Malay people: the Singapore Malay eye study. Invest. Ophthalmol. Vis. Sci. 49(9), 3846–3851 (2008)

    Article  Google Scholar 

  21. Nyúl, L.G. (ed.): Retinal image analysis for automated glaucoma risk evaluation. In: Medical Imaging, Parallel Processing of Images, and Optimization Techniques, MIPPR 2009. International Society for Optics and Photonics (2009)

    Google Scholar 

  22. Borgalli, R.A., Gautam, H.P., Parayil, W.G.: Automated glaucoma detection techniques using fundus image. Int. J. Technol. Enhanc. Emerg. Eng. Res. 3(12), 1–8 (2015)

    Google Scholar 

  23. Kolář, R., Jan, J.: Detection of glaucomatous eye via color fundus images using fractal dimensions. Radioengineering. 17(3), 109–114 (2008)

    Google Scholar 

  24. Sadiq, M.T., Yu, X., Yuan, Z.: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces. Expert Syst. Appl. 164, 114031 (2021)

    Google Scholar 

  25. Sadiq, M.T., Yu, X., Yuan, Z., Aziz, M.Z., Siuly, S., Ding, W.: A matrix determinant feature extraction approach for decoding motor and mental imagery EEG in subject specific tasks. IEEE Trans. Cogn. Dev. Syst. (2020)

    Google Scholar 

  26. Sarki, R., Ahmed, K., Wang, H., Zhang, Y.: Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Inf. Sci. Syst. 8(1), 1–9 (2020). https://doi.org/10.1007/s13755-020-00125-5

    Article  Google Scholar 

  27. Supriya, S., Siuly, S., Wang, H., Zhang, Y.: Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf. Sci. Syst. 8 (1), 1–15 (2020)

    Google Scholar 

  28. Du, J., Michalska, S., Subramani, S., Wang, H., Zhang, Y.: Neural attention with character embeddings for hay fever detection from Twitter. Health Inf. Sci. Syst. 7(1), 1–7 (2019). https://doi.org/10.1007/s13755-019-0084-2

    Article  Google Scholar 

  29. He, J., Rong, J., Sun, L., Wang, H., Zhang, Y., Ma, J.: A framework for cardiac arrhythmia detection from IoT-based ECGs. World Wide Web 23(5), 2835–2850 (2020). https://doi.org/10.1007/s11280-019-00776-9

    Article  Google Scholar 

  30. Jiang, H., Zhou, R., Zhang, L., Wang, H., Zhang, Y.: Sentence level topic models for associated topics extraction. World Wide Web 22(6), 2545–2560 (2019)

    Google Scholar 

  31. Li, H., Wang, Y., Wang, H., Zhou, B.: Multi-window based ensemble learning for classification of imbalanced streaming data. World Wide Web 20(6), 1507–1525 (2017). https://doi.org/10.1007/s11280-017-0449-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Venkatachalam, K., Bacanin, N., Kabir, E., Prabu, P. (2021). Effective Tensor Based PCA Machine Learning Techniques for Glaucoma Detection and ASPP – EffUnet Classification. In: Siuly, S., Wang, H., Chen, L., Guo, Y., Xing, C. (eds) Health Information Science. HIS 2021. Lecture Notes in Computer Science(), vol 13079. Springer, Cham. https://doi.org/10.1007/978-3-030-90885-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90885-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90884-3

  • Online ISBN: 978-3-030-90885-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics