Abstract
Main problem in current research area focused on generating automatic AI technique to detect bio medical images by slimming the dataset. Reducing the original dataset with actual unwanted noises can accelerate new data which helps to detect diseases with high accuracy. Highest level of accuracy can be achieved only by ensuring accuracy at each level of processing steps. Dataset slimming or reduction is NP hard problems due its resembling variants. In this research work we ensure high accuracy in two phases. In phase one feature selection using Normalized Tensor Tubal PCA (NTT-PCA) method is used. This method is based on tensor with single value decomposition (SVD) for accurate dimensionality reduction problems. The dimensionality reduced output from phase one is further processed for accurate classification in phase two. The classification of affected images is detected using ASPP – EffUnet. The atrous spatial pyramid pooling (ASPP) with efficient convolutional block in Unet is combined to provide ASPP – EffUnet CNN architecture for accurate classification. This two phase model is designed and implemented on benchmark datasets of glaucoma detection. It is processed efficiently by exploiting fundus image in the dataset. We propose novel AI techniques for segmenting the eye discs using EffUnet and perform classification using ASPP-EffUnet techniques. Highest accuracy is achieved by NTT-PCA dimensionality reduction process and ASPP-EffUnet based classification which detects the boundaries of eye cup and optical discs very curiously. Our resulting algorithm “NTT-PCA with ASPP-EffUnet “for dimensionality reduction and classification process which is optimized for reducing computational complexity with existing detection algorithms like PCA-LA-SVM,PCA-ResNet ASPP –Unet. We choose benchmark datasets ORIGA for our experimental analysis. The crucial areas in clinical setup are examined and implemented successfully. The prediction and classification accuracy of proposed technique is achieved nearly 100%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hached, M., Jbilou, K., Koukouvinos, C., Mitrouli, M.: A multidimensional principal component analysis via the C-Product Golub–Kahan–SVD for classification and face recognition. Mathematics. 9(11), 1249 (2021)
Krishna Adithya, V., et al.: EffUnet-SpaGen: an efficient and spatial generative approach to glaucoma detection. J. Imaging 7(6), 92 (2021)
Divya, L., Jacob, J.: Performance analysis of glaucoma detection approaches from fundus images. Procedia Comput. Sci. 143, 544–551 (2018)
Christopher, M., et al.: Retinal nerve fiber layer features identified by unsupervised machine learning on optical coherence tomography scans predict glaucoma progression. Invest. Ophthalmol. Vis. Sci. 59(7), 2748–2756 (2018)
Wang, Z.-Y., Xia, Q.-M., Yan, J.-W., Xuan, S.-Q., Su, J.-H., Yang, C.-F.: Hyperspectral image classification based on spectral and spatial information using multi-scale ResNet. Appl. Sci. 9(22), 4890 (2019)
Rossetti, L., et al.: Blindness and glaucoma: a multicenter data review from 7 academic eye clinics. PloS one 10(8), e0136632 (2015)
Balyen, L., Peto, T.: Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology. Asia-Pac. J. Ophthalmol. 8(3), 264–272 (2019)
Li, Z., He, Y., Keel, S., Meng, W., Chang, R.T., He, M.: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 125(8), 1199–1206 (2018)
Li, L., Xu, M., Liu, H., Li, Y., Wang, X., Jiang, L., et al.: A large-scale database and a CNN model for attention-based glaucoma detection. IEEE Trans. Med. Imaging 39(2), 413–424 (2019)
MacCormick, I.J., et al.: Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile. PloS one 14(1), e0209409 (2019)
Schmidt-Erfurth, U., Sadeghipour, A., Gerendas, B.S., Waldstein, S.M., Bogunović, H.: Artificial intelligence in retina. Prog. Retin. Eye Res. 67, 1–29 (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol 9351, pp 234-241. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28
Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imaging 37(7), 1597–1605 (2018)
Iglovikov, V., Shvets, A.: TernausNet: U-net with VGG11 encoder pre-trained on imagenet for image segmentation. arXiv prerint. arXiv preprint arXiv:180105746 (2018)
Chaurasia, A., Culurciello, E.: LinkNet: exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE (2017)
Kumar, E.S., Bindu, C.S.: Two-stage framework for optic disc segmentation and estimation of cup-to-disc ratio using deep learning technique. J. Ambient Intell. Humaniz. Comput. 1–13 (2021)
Khan, M.K., Anwar, S.M. (eds.): M-Net with bidirectional ConvLSTM for cup and disc segmentation in fundus images. In: 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE (2021)
Imtiaz, R., Khan, T.M., Naqvi, S.S., Arsalan, M., Nawaz, S.J.: Screening of Glaucoma disease from retinal vessel images using semantic segmentation. Comput. Electr. Eng. 91, 107036 (2021)
Tabassum, M., et al.: CDED-Net: joint segmentation of optic disc and optic cup for glaucoma screening. IEEE Access. 8, 102733–102747 (2020)
Shen, S.Y., et al.: The prevalence and types of glaucoma in Malay people: the Singapore Malay eye study. Invest. Ophthalmol. Vis. Sci. 49(9), 3846–3851 (2008)
Nyúl, L.G. (ed.): Retinal image analysis for automated glaucoma risk evaluation. In: Medical Imaging, Parallel Processing of Images, and Optimization Techniques, MIPPR 2009. International Society for Optics and Photonics (2009)
Borgalli, R.A., Gautam, H.P., Parayil, W.G.: Automated glaucoma detection techniques using fundus image. Int. J. Technol. Enhanc. Emerg. Eng. Res. 3(12), 1–8 (2015)
Kolář, R., Jan, J.: Detection of glaucomatous eye via color fundus images using fractal dimensions. Radioengineering. 17(3), 109–114 (2008)
Sadiq, M.T., Yu, X., Yuan, Z.: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces. Expert Syst. Appl. 164, 114031 (2021)
Sadiq, M.T., Yu, X., Yuan, Z., Aziz, M.Z., Siuly, S., Ding, W.: A matrix determinant feature extraction approach for decoding motor and mental imagery EEG in subject specific tasks. IEEE Trans. Cogn. Dev. Syst. (2020)
Sarki, R., Ahmed, K., Wang, H., Zhang, Y.: Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Inf. Sci. Syst. 8(1), 1–9 (2020). https://doi.org/10.1007/s13755-020-00125-5
Supriya, S., Siuly, S., Wang, H., Zhang, Y.: Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf. Sci. Syst. 8 (1), 1–15 (2020)
Du, J., Michalska, S., Subramani, S., Wang, H., Zhang, Y.: Neural attention with character embeddings for hay fever detection from Twitter. Health Inf. Sci. Syst. 7(1), 1–7 (2019). https://doi.org/10.1007/s13755-019-0084-2
He, J., Rong, J., Sun, L., Wang, H., Zhang, Y., Ma, J.: A framework for cardiac arrhythmia detection from IoT-based ECGs. World Wide Web 23(5), 2835–2850 (2020). https://doi.org/10.1007/s11280-019-00776-9
Jiang, H., Zhou, R., Zhang, L., Wang, H., Zhang, Y.: Sentence level topic models for associated topics extraction. World Wide Web 22(6), 2545–2560 (2019)
Li, H., Wang, Y., Wang, H., Zhou, B.: Multi-window based ensemble learning for classification of imbalanced streaming data. World Wide Web 20(6), 1507–1525 (2017). https://doi.org/10.1007/s11280-017-0449-x
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Venkatachalam, K., Bacanin, N., Kabir, E., Prabu, P. (2021). Effective Tensor Based PCA Machine Learning Techniques for Glaucoma Detection and ASPP – EffUnet Classification. In: Siuly, S., Wang, H., Chen, L., Guo, Y., Xing, C. (eds) Health Information Science. HIS 2021. Lecture Notes in Computer Science(), vol 13079. Springer, Cham. https://doi.org/10.1007/978-3-030-90885-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-90885-0_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90884-3
Online ISBN: 978-3-030-90885-0
eBook Packages: Computer ScienceComputer Science (R0)