Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Novel Alcoholic EEG Signals Classification Approach Based on AdaBoost k-means Coupled with Statistical Model

  • Conference paper
  • First Online:
Health Information Science (HIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13079))

Included in the following conference series:

Abstract

Identification of alcoholism is an important task because it affects the operation of the brain. Alcohol consumption, particularly heavier drinking is identified as an essential factor to develop health issues, such as high blood pressure, immune disorders, and heart diseases. To support health professionals in diagnosis disorders related with alcoholism with a high rate of accuracy, there is an urgent demand to develop an automated expert systems for identification of alcoholism. In this study, an expert system is proposed to identify alcoholism from multi-channel EEG signals. EEG signals are partitioned into small epochs, with each epoch is further divided into sub-segments. A covariance matrix method with its eigenvalues is utilised to extract representative features from each sub-segment. To select most relevant features, a statistic approach named Kolmogorov–Smirnov test is adopted to select the final features set. Finally, in the classification part, a robust algorithm called AdaBoost k-means (AB-k-means) is designed to classify EEG features into two categories alcoholic and non-alcoholic EEG segments. The results in this study show that the proposed model is more efficient than the previous models, and it yielded a high classification rate of 99%. In comparison with well-known classification algorithms such as K-nearest k-means and SVM on the same databases, our proposed model showed a promising result compared with the others. Our findings showed that the proposed model has a potential to implement in automated alcoholism detection systems to be used by experts to provide an accurate and reliable decisions related to alcoholism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pelvig, D.P., Pakkenberg, H., Stark, A.K., Pakkenberg, B.: Neocortical glial cell numbers in human brains. Neurobiol. Aging 29(11), 1754–1762 (2008)

    Article  Google Scholar 

  2. Deiner, S., Silverstein, J.: Postoperative delirium and cognitive dysfunction. Br. J. Anaesth. 103(suppl_1), i41–i46 (2009)

    Google Scholar 

  3. Volkow, N.D., Wiers, C.E., Shokri-Kojori, E., Tomasi, D., Wang, G.-J., Baler, R.: Neurochemical and metabolic effects of acute and chronic alcohol in the human brain: studies with positron emission tomography. Neuropharmacology 122, 175–188 (2017)

    Article  Google Scholar 

  4. Lieber, C.S.: Medical disorders of alcoholism. N. Engl. J. Med. 333(16), 1058–1065 (1995)

    Article  Google Scholar 

  5. Oscar-Berman, M., Shagrin, B., Evert, D.L., Epstein, C.: Impairments of brain and behavior: the neurological effects of alcohol. Alcohol Health Res. World 21(1), 65 (1997)

    Google Scholar 

  6. Acharya, U.R., Bhat, S., Adeli, H., Adeli, A.: Computer-aided diagnosis of alcoholism-related EEG signals. Epilepsy Behav. 41, 257–263 (2014)

    Article  Google Scholar 

  7. Faust, O., Acharya, R., Allen, A.R., Lin, C.: Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques. IRBM 29(1), 44–52 (2008)

    Article  Google Scholar 

  8. Patidar, S., Pachori, R.B., Upadhyay, A., Acharya, U.R.: An integrated alcoholic index using tunable-Q wavelet transform based features extracted from EEG signals for diagnosis of alcoholism. Appl. Soft Comput. 50, 71–78 (2017)

    Article  Google Scholar 

  9. Shooshtari, M.A., Setarehdan, S.K.: Selection of optimal EEG channels for classification of signals correlated with alcohol abusers. In: IEEE 10th International Conference on Signals Processing, pp. 1–4. IEEE, Beijing (2010)

    Google Scholar 

  10. Kumar, Y., Dewal, M., Anand, R.: Features extraction of EEG signals using approximate and sample entropy. In: The 2012 IEEE Students Conference on Electrical, Electronics and Computer Science, pp. 1–5, IEEE, Bhopal (2012)

    Google Scholar 

  11. Cao, R., Deng, H., Wu, Z., Liu, G., Guo, H., Xiang, J.: Decreased synchronization in alcoholics using EEG. IRBM 38(2), 63–70 (2017)

    Article  Google Scholar 

  12. Lin, C.-F., Yeh, S.-W., Chien, Y.-Y., Peng, T.-I., Wang, J.-H., Chang, S.-H.: A HHT-based time frequency analysis scheme for clinical alcoholic EEG signals. In: The WSEAS International Conference. Proceedings of the Mathematics and Computers in Science and Engineering, no. 9. World Scientific and Engineering Academy and Society (2009)

    Google Scholar 

  13. Kousarrizi, M.R.N., Ghanbari, A.A., Gharaviri, A., Teshnehlab, M., Aliyari, M.: Classification of alcoholics and non-alcoholics via EEG using SVM and neural networks. In: 3rd International Conference on Bioinformatics and Biomedical Engineering, pp. 1–4, Beijing. IEEE (2009)

    Google Scholar 

  14. Sadiq, M.T., Yu, X., Yuan, Z., Aziz, M.Z., Siuly, S., Ding, W.: A matrix determinant feature extraction approach for decoding motor and mental imagery EEG in subject specific tasks. IEEE Trans. Cogn. Dev. Syst. (2020). https://doi.org/10.1109/TCDS.2020.3040438

  15. Sadiq, M.T., Yu, X., Yuan, Z.: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces. Expert Syst. Appl. 164, 114031 (2020)

    Google Scholar 

  16. Hettich, S., Bay, S.: The UCI KDD Archive. University of California, Irvine, CA. Department of Information and Computer Science 152 (1999). http://kdd.ics.uci.edu

  17. Zhang, X.L., Begleiter, H., Porjesz, B., Litke, A.: Electrophysiological evidence of memory impairment in alcoholic patients. Biol. Psychiat. 42(12), 1157–1171 (1997)

    Article  Google Scholar 

  18. Diykh, M., Li, Y., Wen, P.: Classify epileptic EEG signals using weighted complex networks-based community structure detection. Expert Syst. Appl. 90, 87–100 (2017)

    Article  Google Scholar 

  19. Diykh, M., Li, Y., Wen, P., Li, T.: Complex networks approach for depth of anesthesia assessment. Measurement 119, 178–189 (2018)

    Article  Google Scholar 

  20. Diykh, M., Miften, F.S., Abdulla, S., Saleh, K., Green, J.H.: Robust approach to depth of anaesthesia assessment based on hybrid transform and statistical features. IET Sci. Meas. Technol. 14(1), 128–136 (2019)

    Article  Google Scholar 

  21. Miften, F.S., Diykh, M., Abdulla, S., Siuly, S., Green, J.H., Deo, R.C.: A new framework for classification of multi-category hand grasps using EMG signals. Artif. Intell. Med. 112, 102005 (2021)

    Article  Google Scholar 

  22. Faust, O., Yu, W., Kadri, N.A.: Computer-based identification of normal and alcoholic EEG signals using wavelet packets and energy measures. J. Mech. Med. Biol. 13(03), 1350033 (2013)

    Article  Google Scholar 

  23. Faust, O., Yanti, R., Yu, W.: Automated detection of alcohol related changes in electroencephalograph signals. J. Med. Imaging Health Inform. 3(2), 333–339 (2013)

    Article  Google Scholar 

  24. Kannathal, N., Acharya, U.R., Lim, C.M., Sadasivan, P.: Characterization of EEG—a comparative study. Comput. Methods Programs Biomed. 80(1), 17–23 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahab Abdulla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diykh, M., Abdulla, S., Oudah, A.Y., Marhoon, H.A., Siuly, S. (2021). A Novel Alcoholic EEG Signals Classification Approach Based on AdaBoost k-means Coupled with Statistical Model. In: Siuly, S., Wang, H., Chen, L., Guo, Y., Xing, C. (eds) Health Information Science. HIS 2021. Lecture Notes in Computer Science(), vol 13079. Springer, Cham. https://doi.org/10.1007/978-3-030-90885-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90885-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90884-3

  • Online ISBN: 978-3-030-90885-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics