Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evaluating Unidimensional Convolutional Neural Networks to Forecast the Influent pH of Wastewater Treatment Plants

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2021 (IDEAL 2021)

Abstract

One of our society’s challenges today is water resources management due to its importance for human life. The monitoring of various substances present in wastewater is a crucial part of the process of Wastewater Treatment Plants (WWTPs). One of these substances is the influent’s pH, which plays a fundamental role in the nitrification and nitration processes. Hence, this paper presents a study to forecast the influent pH in a WWTP for the next two days. For this purpose, several candidate models were conceived, tunned and evaluated, taking into account the one-dimensional Convolutional Neural Networks (CNNs) considering two distinct approaches in the Pooling layer: the channels’ last and the channels’ first. The best candidate model obtained a Mean Absolute Error (MAE) of 0.257, following the channel’s last approach, compared to the channels’ first that obtained a MAE of 0.272.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Salgot, M., Folch, M.: Wastewater treatment and water reuse. Curr. Opin. Environ. Sci. Health 2, 64–74 (2018). https://doi.org/10.1016/j.coesh.2018.03.005

    Article  Google Scholar 

  2. Hao, X., Wang, X., Liu, R., Li, S., van Loosdrecht, M.C., Jiang, H.: Environmental impacts of resource recovery from wastewater treatment plants. Water Res. 160, 268–277 (2019). https://doi.org/10.1016/j.watres.2019.05.068

    Article  Google Scholar 

  3. Wang, X., et al.: Stepwise pH control to promote synergy of chemical and biological processes for augmenting short-chain fatty acid production from anaerobic sludge fermentation. Water Res. 155, 193–203 (2019). https://doi.org/10.1016/j.watres.2019.02.032

    Article  Google Scholar 

  4. Peng, F., et al.: Removal of high-strength ammonia nitrogen in biofilters: nitrifying bacterial community compositions and their effects on nitrogen transformation. Water 12(3), 712 (2020). https://doi.org/10.3390/w12030712

    Article  Google Scholar 

  5. Proksch, E.: pH in nature, humans and skin. J. Dermatol. 45(9), 1044–1052 (2018). https://doi.org/10.1111/1346-8138.14489

    Article  Google Scholar 

  6. Maleki, A., Nasseri, S., Aminabad, M.S., Hadi, M.: Comparison of ARIMA and NNAR models for forecasting water treatment plant’s influent characteristics. KSCE J. Civ. Eng. 22(9), 3233–3245 (2018). https://doi.org/10.1007/s12205-018-1195-z

    Article  Google Scholar 

  7. Ansari, M., Othman, F., El-Shafie, A.: Optimized fuzzy inference system to enhance prediction accuracy for influent characteristics of a sewage treatment plant. Sci. Total Environ. 722, 137878 (2020). https://doi.org/10.1016/j.scitotenv.2020.137878

    Article  Google Scholar 

  8. Flores-Alsina, X., et al.: A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models. Water Res. 85, 255–265 (2015). https://doi.org/10.1016/j.watres.2015.07.014

    Article  Google Scholar 

  9. Shang, L., Yang, Q., Wang, J., Li, S., Lei, W.: Detection of rail surface defects based on CNN image recognition and classification. In: 2018 20th International Conference on Advanced Communication Technology (ICACT), pp. 45–51. IEEE, February 2018. https://doi.org/10.23919/ICACT.2018.8323642

  10. Fernandes, D., et al.: Point-cloud based 3D object detection and classification methods for self-driving applications: a survey and taxonomy. Inf. Fusion 68, 161–191 (2021). https://doi.org/10.1016/j.inffus.2020.11.002

    Article  Google Scholar 

  11. Fernandes, B., Silva, F., Alaiz-Moreton, H., Novais, P., Neves, J., Analide, C.: Long short-term memory networks for traffic flow forecasting: exploring input variables, time frames and multi-step approaches. Informatica 31(4), 723–749 (2020). https://doi.org/10.15388/20-INFOR431

    Article  MathSciNet  Google Scholar 

  12. Fernandes, B., Silva, F., Alaiz-Moretón, H., Novais, P., Analide, C., Neves, J.: Traffic flow forecasting on data-scarce environments using ARIMA and LSTM networks. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’19 2019. AISC, vol. 930, pp. 273–282. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16181-1_26

    Chapter  Google Scholar 

  13. Zhou, F., Zhou, H., Yang, Z., Gu, L.: IF2CNN: towards non-stationary time series feature extraction by integrating iterative filtering and convolutional neural networks. Expert Syst. Appl. 170, 114527 (2021). https://doi.org/10.1016/j.eswa.2020.114527

    Article  Google Scholar 

  14. Jin, X., Yu, X., Wang, X., Bai, Y., Su, T., Kong, J.: Prediction for time series with CNN and LSTM. In: Wang, R., Chen, Z., Zhang, W., Zhu, Q. (eds.) Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019). LNEE, vol. 582, pp. 631–641. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0474-7_59

    Chapter  Google Scholar 

  15. Oliveira, P., Fernandes, B., Analide, C., Novais, P.: Forecasting energy consumption of wastewater treatment plants with a transfer learning approach for sustainable cities. Electronics 10(10), 1149 (2021). https://doi.org/10.3390/electronics10101149

    Article  Google Scholar 

Download references

Acknowledgments

This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project DSAIPA/AI/0099/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oliveira, P., Fernandes, B., Aguiar, F., Pereira, M.A., Novais, P. (2021). Evaluating Unidimensional Convolutional Neural Networks to Forecast the Influent pH of Wastewater Treatment Plants. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2021. IDEAL 2021. Lecture Notes in Computer Science(), vol 13113. Springer, Cham. https://doi.org/10.1007/978-3-030-91608-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91608-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91607-7

  • Online ISBN: 978-3-030-91608-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics