Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Private Join and Compute from PIR with Default

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2021 (ASIACRYPT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13091))

Abstract

The private join and compute (PJC) functionality enables secure computation over data distributed across different databases, and is applicable to a wide range of applications, many of which address settings where the input databases are of significantly different sizes.

We introduce the notion of private information retrieval (PIR) with default, which enables two-party PJC functionalities in a way that hides the size of the intersection of the two databases and incurs sublinear communication cost in the size of the bigger database. We provide two constructions for this functionality, one of which requires offline linear communication, which can be amortized across queries, and one that provides sublinear cost for each query but relies on more computationally expensive tools. We construct inner-product PJC, which has applications to ads conversion measurement and contact tracing, relying on an extension of PIR with default. We evaluate the efficiency of our constructions, which can enable \(\mathbf {2^{8}}\) PIR with default lookups on a database of size \(\mathbf {2^{25}}\) (or inner-product PJC on databases with such sizes) with the communication of \(\mathbf {44}\) MB, which costs less than \(\mathbf {0.17}\)c. for the client and \(\mathbf {26.48}\)c. for the server.

T. de Lepoint—Independent researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries and amortized query processing. In: 2018 IEEE Symposium on Security and Privacy (2018)

    Google Scholar 

  2. Privacy-preserving contact tracing (2020)

    Google Scholar 

  3. Ali, A., et al.: Communication-computation trade-offs in PIR. IACR Cryptology ePrint Archive 2019:1483 (2019)

    Google Scholar 

  4. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. Cryptology ePrint Archive, Report 2015/046 (2015). http://eprint.iacr.org/2015/046

  5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. TOCT 6(3), 13:1–13:36 (2014)

    Google Scholar 

  6. Buddhavarapu, P., Knox, A., Mohassel, P., Sengupta, S., Taubeneck, E., Vlaskin, V.: Private matching for compute. ePrint (2020)

    Google Scholar 

  7. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  Google Scholar 

  8. Chan, J., et al.: Pact: Privacy sensitive protocols and mechanisms for mobile contact tracing (2020)

    Google Scholar 

  9. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: 36th FOCS, pp. 41–50. IEEE Computer Society Press, October 1995

    Google Scholar 

  10. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. Cryptology ePrint Archive, Report 1998/003 (1998). http://eprint.iacr.org/1998/003

  11. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic encryption with malicious security. In: ACM CCS 2018 (2018)

    Google Scholar 

  12. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM 45(6), 965–981 (1998)

    Article  MathSciNet  Google Scholar 

  13. Czumaj, A., Riley, C., Scheideler, C.: Perfectly balanced allocation. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) APPROX/RANDOM -2003. LNCS, vol. 2764, pp. 240–251. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45198-3_21

    Chapter  Google Scholar 

  14. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 789–800. ACM Press, November 2013

    Google Scholar 

  15. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  16. Decentralized privacy-preserving proximity tracing (2020). https://github.com/DP-3T

  17. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive 2012:144 (2012)

    Google Scholar 

  18. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford, CA, USA (2009)

    Google Scholar 

  19. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Comput. Syst. Sci. (2000)

    Google Scholar 

  20. Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Applications. Cambridge University Press (2004)

    Google Scholar 

  21. GoogleBlogPost (2019). https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html

  22. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_65

    Chapter  Google Scholar 

  23. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better than custom protocols? In: NDSS 2012. The Internet Society, February 2012

    Google Scholar 

  24. Ion, M., et al.: On deploying secure computing commercially: private intersectionsum protocols and their business applications. In: EuroSP (2020)

    Google Scholar 

  25. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_4

    Chapter  Google Scholar 

  26. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: ACM CCS 2016 (2016)

    Google Scholar 

  27. Kreuter, B., Lepoint, T., Orru, M., Raykova, M.: Efficient anonymous tokens with private metadata bit. Cryptology ePrint Archive, Report 2020/072 (2020)

    Google Scholar 

  28. Kiss, Á., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection for unequal set sizes with mobile applications. In: PoPETs (2017)

    Google Scholar 

  29. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-party private set intersection from symmetric-key techniques. In: ACM CCS 2017 (2017)

    Google Scholar 

  30. Lepoint, T., Patel, S., Raykova, M., Seth, K., Trieu, N.: Private join and compute from PIR with default. Cryptology ePrint Archive, Report 2020/1011 (2020). https://ia.cr/2020/1011

  31. Meadows, C.A.: A more efficient cryptographic matchmaking protocol for use in the absence of a continuously available third party. In: IEEE Symposium on Security and Privacy, pp. 134–137 (1986)

    Google Scholar 

  32. Mood, B., Gupta, D., Carter, H., Butler, K.R.B., Traynor, P.: Frigate: a validated, extensible, and efficient compiler and interpreter for secure computation. In: IEEE European Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, 21–24 March 2016, pp. 112–127. IEEE (2016)

    Google Scholar 

  33. http://mint.sbg.ac.at

  34. Orru, M., Orsini, E., Schol, P.: Actively secure 1-out-of-N OT extension with application to private set intersection. In: CT-RSA (2017)

    Google Scholar 

  35. Pagh, R., Rodler, F.F.: Cuckoo hashing. In: auf der Heide, F.M. (ed.) ESA 2001. LNCS, vol. 2161, pp. 121–133. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44676-1_10

    Chapter  Google Scholar 

  36. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-Light: lightweight private set intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_13

    Chapter  Google Scholar 

  37. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_25

    Chapter  Google Scholar 

  38. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In: USENIX Security 2015 (2015)

    Google Scholar 

  39. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_5

    Chapter  Google Scholar 

  40. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on OT extension. In: ACM TOPS (2018)

    Google Scholar 

  41. Resende, A.C.D., Aranha, D.F.: Faster unbalanced private set intersection. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 203–221. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-6_11

    Chapter  Google Scholar 

  42. Rabin, M.O.: How to exchange secrets with oblivious transfer. ePrint 2005/187 (2005)

    Google Scholar 

  43. Schoppmann, P., Gascón, A., Raykova, M., Pinkas, B.: Make some ROOM for the zeros: data sparsity in secure distributed machine learning. In: ACM Conference on Computer and Communications Security, pp. 1335–1350. ACM (2019)

    Google Scholar 

  44. Simple homomorphic encryption library with lattices (2020). https://github.com/google/shell-encryption

  45. Trieu, N., Shehata, K., Saxena, P., Shokri, R., Song, D.: Epione: lightweight contact tracing with strong privacy, arXiv (2020)

    Google Scholar 

Download references

Acknowledgement

The last author is partially supported by NSF awards #2031799, #2101052, and #2115075. Part of this work was done while the first and last authors worked at Google.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ni Trieu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lepoint, T., Patel, S., Raykova, M., Seth, K., Trieu, N. (2021). Private Join and Compute from PIR with Default. In: Tibouchi, M., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2021. ASIACRYPT 2021. Lecture Notes in Computer Science(), vol 13091. Springer, Cham. https://doi.org/10.1007/978-3-030-92075-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92075-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92074-6

  • Online ISBN: 978-3-030-92075-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics