Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-branch Fusion Fully Convolutional Network for Person Re-Identification

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13110))

Included in the following conference series:

  • 1737 Accesses

Abstract

Building effective CNN architectures with light weight has become an increasing application demand for person re-identification (Re-ID) tasks. However, most of the existing methods adopt large CNN models as baseline, which is complicated and inefficient. In this paper, we propose an efficient and effective CNN architecture named Multi-branch Fusion Fully Convolutional Network (MBF-FCN). Firstly, multi-branch feature extractor module focusing on different receptive field sizes is designed to extract low-level features. Secondly, basic convolution block units (CBU) are used for constructing candidate network module to obtain deep-layer feature presentation. Finally, head structures consisted of multi-branches will be adopted, combining not only global and local features but also lower-level and higher-level features with fully convolutional layer. Experiments demonstrate our superior trade-off among model size, speed, computation, and accuracy. Specifically, our model trained from scratch, only has 2.1 million parameters, 0.84 GFLOPs and 384-dimensional features, reaching the state-of-the-art result on Market-1501 and DuckMTMCreID dataset of Rank-1/mAP = 94.5\(\%\)/84.3\(\%\), Rank-1/mAP = 86.6\(\%\)/73.5\(\%\) without re-ranking, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: past, present and future. arXiv preprint arXiv:1610.02984 (2016)

  2. Wu, L., Shen, C., van den Hengel, A.: PersonNet: person re-identification with deep convolutional neural networks. arXiv preprint arXiv:1601.07255 (2016)

  3. Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., Hoi, S.C.: Deep learning for person re-identification: a survey and outlook. IEEE Trans. Patt. Anal. Mach. Intell. (2021)

    Google Scholar 

  4. He, L., Liao, X., Liu, W., Liu, X., Cheng, P., Mei, T.: FastReID: a Pytorch toolbox for general instance re-identification. arXiv preprint arXiv:2006.02631 (2020)

  5. Luo, H., et al.: A strong baseline and batch normalization neck for deep person re-identification. IEEE Trans. Multimedia 22(10), 2597–2609 (2019)

    Article  Google Scholar 

  6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  7. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 480–496 (2018)

    Google Scholar 

  10. Wang, G., Yuan, Y., Chen, X., Li, J., Zhou, X.: Learning discriminative features with multiple granularities for person re-identification. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 274–282 (2018)

    Google Scholar 

  11. Zhang, X., et al.: AlignedReID: surpassing human-level performance in person re-identification. arXiv preprint arXiv:1711.08184 (2017)

  12. Liang, J., Zeng, D., Chen, S., Tian, Q.: Related attention network for person re-identification. In: 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM), pp. 366–372. IEEE (2019)

    Google Scholar 

  13. Li, W., et al.: Collaborative attention network for person re-identification. J. Phys. Conf. Ser. 1848, 012074. IOP Publishing (2021)

    Google Scholar 

  14. Yang, F., et al.: Horizontal pyramid matching for person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8295–8302 (2019)

    Google Scholar 

  15. Huang, J., Liu, B., Lihua, F.: Joint multi-scale discrimination and region segmentation for person Re-ID. Patt. Recogn. Lett. 138, 540–547 (2020)

    Article  Google Scholar 

  16. Gao, S., Wang, J., Lu, H., Liu, Z.: Pose-guided visible part matching for occluded person ReID. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11744–11752 (2020)

    Google Scholar 

  17. Quan, R., Dong, X., Wu, Y., Zhu, L., Yang, Y.: Auto-ReID: searching for a part-aware convnet for person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3750–3759 (2019)

    Google Scholar 

  18. Chang, X., Hospedales, T.M., Xiang, T.: Multi-level factorisation net for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2109–2118 (2018)

    Google Scholar 

  19. Zhou, K., Yang, Y., Cavallaro, A., Xiang, T.: Learning generalisable omni-scale representations for person re-identification. IEEE Trans. Patt. Anal. Mach. Intell. (2021)

    Google Scholar 

  20. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3754–3762 (2017)

    Google Scholar 

  21. Zheng, Z., Zheng, L., Yang, Y.: A discriminatively learned CNN embedding for person reidentification. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 14(1), 1–20 (2017)

    Google Scholar 

  22. Xiong, F., Xiao, Y., Cao, Z., Gong, K., Fang, Z., Zhou, J.T.: Towards good practices on building effective CNN baseline model for person re-identification. arXiv preprint arXiv:1807.11042 (2018)

  23. Li, W., Zhu, X., Gong, S.: Harmonious attention network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2285–2294 (2018)

    Google Scholar 

  24. Zhang, L., Wu, X., Zhang, S., Yin, Z.: Branch-cooperative OSNet for person re-identification (2020)

    Google Scholar 

  25. Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: enhancing learning and generalization capacities via ibn-net. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 464–479 (2018)

    Google Scholar 

  26. Zhong, Z., Zheng, L., Cao, D., Li, S.: Re-ranking person re-identification with k-reciprocal encoding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1318–1327 (2017)

    Google Scholar 

  27. Zhang, X., Jiang, M., Zheng, Z., Tan, X., Ding, E., Yang, Y.: Understanding image retrieval re-ranking: a graph neural network perspective. arXiv preprint arXiv:2012.07620 (2020)

  28. https://github.com/douzi0248/Re-ID

  29. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1116–1124 (2015)

    Google Scholar 

  30. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_2

    Chapter  Google Scholar 

  31. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13001–13008 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Te Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, S., Li, T., Zhu, S., Meng, Q., Gu, J. (2021). Multi-branch Fusion Fully Convolutional Network for Person Re-Identification. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92238-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92237-5

  • Online ISBN: 978-3-030-92238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics