Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Inference in Neural Networks Using Conditional Mean-Field Methods

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Abstract

We extend previous mean-field approaches for non-equilibrium neural network models to estimate correlations in the system. This offers a powerful tool for approximating the system dynamics, as well as a fast method for inferring network parameters from observations. We develop our method for the asymmetric kinetic Ising model and test its performance on 1) synthetic data generated by an asymmetric Sherrington Kirkpatrick model and 2) recordings of in vitro neuron spiking activity from the mouse somatosensory cortex. We find that our mean-field method outperforms previous ones in estimating networks correlations and successfully reconstructs network dynamics from data near a phase transition showing large fluctuations.

Á. Poc-López and M. Aguilera—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985)

    Article  Google Scholar 

  2. Aguilera, M., Moosavi, S.A., Shimazaki, H.: A unifying framework for mean-field theories of asymmetric kinetic Ising systems. Nat. Commun. 12(1), 1–12 (2021)

    Article  Google Scholar 

  3. Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M., Keller, P.J.: Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10(5), 413–420 (2013)

    Article  Google Scholar 

  4. Bachschmid-Romano, L., Battistin, C., Opper, M., Roudi, Y.: Variational perturbation and extended Plefka approaches to dynamics on random networks: the case of the kinetic Ising model. J. Phys. A: Math. Theor. 49(43), 434003 (2016)

    Article  MathSciNet  Google Scholar 

  5. Ito, S., et al.: Large-scale, high-resolution multielectrode-array recording depicts functional network differences of cortical and hippocampal cultures. PLOS ONE 9(8), 1–16 (2014)

    Article  Google Scholar 

  6. Ito, S., Yeh, F.C., Timme, N.M., Hottowy, P., Litke, A.M., Beggs, J.M.: Spontaneous spiking activity of hundreds of neurons in mouse somatosensory cortex slice cultures recorded using a dense 512 electrode array. CRCNS. org (2016)

    Google Scholar 

  7. Kappen, H.J., Spanjers, J.J.: Mean field theory for asymmetric neural networks. Phys. Rev. E 61(5), 5658–5663 (2000)

    Article  Google Scholar 

  8. Mézard, M., Sakellariou, J.: Exact mean-field inference in asymmetric kinetic Ising systems. J. Stat. Mech.: Theory Exp. 2011(07), L07001 (2011)

    Article  Google Scholar 

  9. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations. Wiley, New York (1977)

    MATH  Google Scholar 

  10. Roudi, Y., Dunn, B., Hertz, J.: Multi-neuronal activity and functional connectivity in cell assemblies. Curr. Opin. Neurobiol. 32, 38–44 (2015)

    Article  Google Scholar 

  11. Roudi, Y., Hertz, J.: Dynamical TAP equations for non-equilibrium Ising spin glasses. J. Stat. Mech.: Theory Exp. 2011(03), P03031 (2011)

    Article  Google Scholar 

  12. Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M., Harris, K.D.: High-dimensional geometry of population responses in visual cortex. Nature 571, 361–365 (2019)

    Article  Google Scholar 

  13. Thouless, D.J., Anderson, P.W., Palmer, R.G.: Solution of ‘Solvable model of a spin glass’. Philos. Mag.: J. Theor. Exp. Appl. Phys. 35(3), 593–601 (1977)

    Article  Google Scholar 

  14. Tkačik, G., Marre, O., Amodei, D., Schneidman, E., Bialek, W., Ii, M.J.B.: Searching for collective behavior in a large network of sensory neurons. PLOS Comput. Biol. 10(1), e1003408 (2014)

    Article  Google Scholar 

  15. Tkačik, G., et al.: Thermodynamics and signatures of criticality in a network of neurons. Proc. Natl. Acad. Sci. 112(37), 11508–11513 (2015)

    Article  Google Scholar 

  16. Tyrcha, J., Roudi, Y., Marsili, M., Hertz, J.: The effect of nonstationarity on models inferred from neural data. J. Stat. Mech.: Theory Exp. 2013(03), P03005 (2013)

    Article  MathSciNet  Google Scholar 

  17. Witoelar, A., Roudi, Y.: Neural network reconstruction using kinetic Ising models with memory. BMC Neurosci. 12(1), P274 (2011)

    Article  Google Scholar 

  18. Zeng, H.L., Alava, M., Aurell, E., Hertz, J., Roudi, Y.: Maximum likelihood reconstruction for Ising models with asynchronous updates. Phys. Rev. Lett. 110, 210601 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

M.A. was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 892715.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Poc-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poc-López, Á., Aguilera, M. (2021). Inference in Neural Networks Using Conditional Mean-Field Methods. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13109. Springer, Cham. https://doi.org/10.1007/978-3-030-92270-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92270-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92269-6

  • Online ISBN: 978-3-030-92270-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics