Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Causality Extraction Based on Dependency Syntactic and Relative Attention

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1516))

Included in the following conference series:

  • 2693 Accesses

Abstract

Mining causal relation in text is a complex and critical natural language understanding task. Recently, many efforts focus on extracting causal event pairs in text by exploiting sequence labeling. However, few studies give the uniform definition of the annotation scheme and the labeling boundary of causal events. To address these issues, this paper proposes a novel causal event labeling scheme based on dependency syntactic, which can express the complete semantics of causal relation, as well as delineate the causal event boundaries explicitly. In addition, combined with the relative attention and dependency syntactic, we construct a causal event extraction model named DGLSTM-GRAT-CRF. Experimental results indicate that our model achieves better performance compared with state-of-the-art causality extraction models. Besides, we attempt to explore the influence of various additional features on causal extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence labeling. In: Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, New Mexico, USA, pp. 1638–1649. ACL (2018)

    Google Scholar 

  2. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, Minneapolis, Minnesota, pp. 4171–4186. ACL (2019)

    Google Scholar 

  3. Feng, C., Qi, K., Shi, G., Huang, H.: Causality extraction with GAN. Acta Automatica Sinica 44(5), 811–818 (2018)

    Google Scholar 

  4. Jie, Z., Lu, W.: Dependency-guided LSTM-CRF for named entity recognition. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, pp. 3862–3872. ACL (2019)

    Google Scholar 

  5. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (2015)

    Google Scholar 

  6. Li, P., Mao, K.: Knowledge-oriented convolutional neural network for causal relation extraction from natural language texts. Expert Syst. Appl. 115, 512–523 (2019)

    Article  Google Scholar 

  7. Li, Z., Li, Q., Zou, X., Ren, J.: Causality extraction based on self-attentive BiLSTM-CRF with transferred embeddings. Neurocomputing 423, 207–219 (2021)

    Article  Google Scholar 

  8. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Baltimore, Maryland, pp. 55–60. ACL (2014)

    Google Scholar 

  9. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, pp. 1532–1543. ACL (2014)

    Google Scholar 

  10. Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C.: Deep contextualized word representations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 2227–2237. ACL (2018)

    Google Scholar 

  11. Radinsky, K., Davidovich, S., Markovitch, S.: Learning causality for news events prediction. In: Proceedings of the 21st International Conference on World Wide Web, New York, pp. 909–918. ACM (2012)

    Google Scholar 

  12. Ramshaw, L., Marcus, M.: Text chunking using transformation-based learning. In: Proceedings of the Third Workshop on Very Large Corpora, pp. 82–94. ACL (1995)

    Google Scholar 

  13. Vaswani, A., et al.: Attention is all you need. arXiv e-prints 1706.03762 (2017)

  14. Velicković, P., Cucurull, G., Casanova, A., Romero, A., Lió, P., Bengio, Y.: Graph attention networks. arXiv e-prints 1710.10903 (2017)

  15. Xu, J., Zuo, W., Liang, S.: Causal relation extraction based on graph attention networks. J. Comput. Res. Dev. 57(1), 159–174 (2020)

    Google Scholar 

  16. Yan, H., Deng, B., Li, X., Qiu, X.: TENER: adapting transformer encoder for named entity recognition. arXiv e-prints 1911.04474 (2019)

  17. Zhang, Y., Qi, P., Manning, C.D.: Graph convolution over pruned dependency trees improves relation extraction. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2205–2215 (2018)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant No. 61866029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, C., Yan, R. (2021). Causality Extraction Based on Dependency Syntactic and Relative Attention. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1516. Springer, Cham. https://doi.org/10.1007/978-3-030-92307-5_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92307-5_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92306-8

  • Online ISBN: 978-3-030-92307-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics