Abstract
Threshold Implementations have become a popular generic technique to construct circuits resilient against power analysis attacks. In this paper, we look to devise efficient threshold circuits for the lightweight block cipher family SKINNY. The only threshold circuits for this family are those proposed by its designers who decomposed the 8-bit S-box into four quadratic S-boxes, and constructed a 3-share byte-serial threshold circuit that executes the substitution layer over four cycles. In particular, we revisit the algebraic structure of the S-box and prove that it is possible to decompose it into (a) three quadratic S-boxes and (b) two cubic S-boxes. Such decompositions allow us to construct threshold circuits that require three shares and executes each round function in three cycles instead of four, and similarly circuits that use four shares requiring two cycles per round. Our constructions significantly reduce latency and energy consumption per encryption operation. Notably, to validate our designs, we synthesize our circuits on standard CMOS cell libraries to evaluate performance, and we conduct leakage detection via statistical tests on power traces on FPGA platforms to assess security. (For reproducibility’s sake, we provide a public repository containing the source code to all proposed schemes together with a script to run the SILVER verification suite [8].)
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that throughout this paper we use the notation \(\textsf {S} _{i_1 \dots i_k}\) to denote decompositions of the same S-box \(\textsf {S} \) into k component S-boxes of algebraic degrees \(i_1 \ldots i_k\).
References
Arribas, V., Bilgin, B., Petrides, G., Nikova, S., Rijmen, V.: Rhythmic Keccak: SCA security and low latency in HW. IACR Trans. Cryptogr. Hardware Embed. Syst. 2018(1), 269–290 (2018). https://doi.org/10.13154/tches.v2018.i1.269-290
Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5
Bilgin, B.: Threshold implementations: as countermeasure against higher-order differential power analysis. Ph.D. thesis, University of Twente, Netherlands, May 2015. https://doi.org/10.3990/1.9789036538916
Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_18
Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations of All \(3\times 3\) and \(4\times 4\) S-Boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_5
Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2
Caforio, A., Balli, F., Banik, S.: Energy analysis of lightweight AEAD circuits. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020. LNCS, vol. 12579, pp. 23–42. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65411-5_2
Caforio, A., Collins, D., Glamocanin, O., Banik, S.: Improving first-order threshold implementations of SKINNY (Repository), October 2021. https://github.com/qantik/skinny-dipping
De Meyer, L., Bilgin, B., Reparaz, O.: Consolidating security notions in hardware masking. IACR Trans. Cryptogr. Hardware Embed. Syst. 2019(3), 119–147 (2019). https://doi.org/10.13154/tches.v2019.i3.119-147
Dhooghe, S., Nikova, S., Rijmen, V.: Threshold implementations in the robust probing model. In: Bilgin, B., Petkova-Nikova, S., Rijmen, V. (eds.) Proceedings of ACM Workshop on Theory of Implementation Security Workshop, TIS@CCS 2019, London, UK, 11 November 2019, pp. 30–37. ACM (2019). https://doi.org/10.1145/3338467.3358949
Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.X.: Composable masking schemes in the presence of physical defaults & the robust probing model. IACR Trans. Cryptogr. Hardware Embed. Syst. 2018(3), 89–120 (2018). https://doi.org/10.13154/tches.v2018.i3.89-120
Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for side-channel resistance validation. In: NIST Non-invasive Attack Testing Workshop, vol. 7, pp. 115–136 (2011)
Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: compact masked hardware implementations with arbitrary protection order. In: Bilgin, B., Nikova, S., Rijmen, V. (eds.) Proceedings of the ACM Workshop on Theory of Implementation Security, TIS@CCS 2016 Vienna, Austria, October 2016, p. 3. ACM (2016). https://doi.org/10.1145/2996366.2996426
Guo, C., Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Romulus v1.3. Technical report (2021)
Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27
Knichel, D., Sasdrich, P., Moradi, A.: SILVER – statistical independence and leakage verification. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 787–816. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_26
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
Moradi, A., Standaert, F.X.: Moments-correlating DPA. In: Proceedings of the 2016 ACM Workshop on Theory of Implementation Security, pp. 5–15 (2016)
Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.1007/11935308_38
Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011). https://doi.org/10.1007/s00145-010-9085-7
Poschmann, A., Moradi, A., Khoo, K., Lim, C.W., Wang, H., Ling, S.: Side-channel resistant crypto for less than 2,300 GE. J. Cryptol. 24(2), 322–345 (2011). https://doi.org/10.1007/s00145-010-9086-6
Reparaz, O.: A note on the security of higher-order threshold implementations. Cryptology ePrint Archive, Report 2015/001 (2015). https://eprint.iacr.org/2015/001
Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_37
Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_25
Shahmirzadi, A.R., Božilov, D., Moradi, A.: New first-order secure AES performance records. IACR Trans. Cryptogr. Hardware Embed. Syst. 2021(2), 304–327 (2021). https://doi.org/10.46586/tches.v2021.i2.304-327
Sönmez Turan, M., et al.: Status report on the second round of the NIST lightweight cryptography standardization process. Technical report, National Institute of Standards and Technology (2021)
Sugawara, T.: 3-share threshold implementation of AES s-box without fresh randomness. IACR Trans. Cryptogr. Hardware Embed. Syst. 2019(1), 123–145 (2018). https://doi.org/10.13154/tches.v2019.i1.123-145
Wegener, F., Baiker, C., Moradi, A.: Shuffle and mix: on the diffusion of randomness in threshold implementations of Keccak. In: Polian, I., Stöttinger, M. (eds.) COSADE 2019. LNCS, vol. 11421, pp. 270–284. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16350-1_15
Wegener, F., De Meyer, L., Moradi, A.: Spin me right round rotational symmetry for FPGA-specific AES: extended version. J. Cryptol. 33(3), 1114–1155 (2020). https://doi.org/10.1007/s00145-019-09342-y
Zarei, S., Shahmirzadi, A.R., Soleimany, H., Salarifard, R., Moradi, A.: Low-latency Keccak at any arbitrary order. IACR Trans. Cryptogr. Hardware Embed. Syst. 2021, 388–411 (2021)
Acknowledgements
We wish to thank the anonymous reviewers whose comments helped improve this work. Subhadeep Banik is supported by the Swiss National Science Foundation (SNSF) through the Ambizione Grant PZ00P2_179921.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Algebraic Expressions for SKINNY S-box S
A Algebraic Expressions for SKINNY S-box S
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Caforio, A., Collins, D., Glamočanin, O., Banik, S. (2021). Improving First-Order Threshold Implementations of SKINNY. In: Adhikari, A., Küsters, R., Preneel, B. (eds) Progress in Cryptology – INDOCRYPT 2021. INDOCRYPT 2021. Lecture Notes in Computer Science(), vol 13143. Springer, Cham. https://doi.org/10.1007/978-3-030-92518-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-92518-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92517-8
Online ISBN: 978-3-030-92518-5
eBook Packages: Computer ScienceComputer Science (R0)