Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Practical Privacy-Preserving Face Identification Based on Function-Hiding Functional Encryption

  • Conference paper
  • First Online:
Cryptology and Network Security (CANS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13099))

Included in the following conference series:

Abstract

Leveraging on function-hiding Functional Encryption (FE) and inner-product-based matching, this work presents a practical privacy-preserving face identification system with two key novelties: switching functionalities of encryption and key generation algorithms of FE to optimize matching latency while maintaining its security guarantees, and identifying output leakage to later formalize two new attacks based on it with appropriate countermeasures. We validate our scheme in a realistic face matching scenario, attesting its applicability to pseudo real-time one-use face identification scenarios like passenger identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    More info in https://en.wikipedia.org/wiki/Biometrics#Performance.

References

  1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

    Chapter  Google Scholar 

  2. Adjabi, I., Ouahabi, A., Benzaoui, A., Taleb-Ahmed, A.: Past, present, and future of face recognition: a review. Electronics 9(8), 1188 (2020)

    Article  Google Scholar 

  3. Barbosa, M., Catalano, D., Soleimanian, A., Warinschi, B.: Efficient function-hiding functional encryption: from inner-products to orthogonality. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 127–148. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_7

    Chapter  Google Scholar 

  4. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16

    Chapter  Google Scholar 

  5. Bourse, F.: Functional encryption for inner-product evaluations. Ph.D. thesis, PSL Research University (2017)

    Google Scholar 

  6. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_7

    Chapter  Google Scholar 

  7. Deng, J., Guo, J., Niannan, X., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: CVPR (2019)

    Google Scholar 

  8. Deng, J., Guo, J., Yuxiang, Z., Yu, J., Kotsia, I., Zafeiriou, S.: Retinaface: single-stage dense face localisation in the wild. In: arxiv (2019)

    Google Scholar 

  9. Gentry, C., et al.: A fully homomorphic encryption scheme, vol. 20. Stanford (2009)

    Google Scholar 

  10. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report. 07–49, University of Massachusetts, Amherst (2007)

    Google Scholar 

  11. Jeon, S.Y., Lee, M.K.: Acceleration of inner-pairing product operation for secure biometric verification. Sensors 21(8), 2859 (2021)

    Article  Google Scholar 

  12. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 544–562. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_29

    Chapter  Google Scholar 

  13. Kim, S., Kim, J., Seo, J.H.: A new approach to practical function-private inner product encryption. Theor. Comput. Sci. 783, 22–40 (2019)

    Article  MathSciNet  Google Scholar 

  14. Lee, J., Kim, D., Kim, D., Song, Y., Shin, J., Cheon, J.H.: Instant privacy-preserving biometric authentication for hamming distance. IACR Cryptol. ePrint Arch. 2018, 1214 (2018)

    Google Scholar 

  15. Project, F.: Cifer: functional encryption library (2021). https://github.com/fentec-project/CiFEr

  16. Sabhanayagam, T., Venkatesan, V.P., Senthamaraikannan, K.: A comprehensive survey on various biometric systems. Int. J. Appl. Eng. Res. 13(5), 2276–2297 (2018)

    Google Scholar 

  17. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  18. Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 408–425. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45871-7_24

    Chapter  MATH  Google Scholar 

  19. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (sfcs 1986), pp. 162–167. IEEE (1986)

    Google Scholar 

  20. Zhou, K., Ren, J.: Passbio: privacy-preserving user-centric biometric authentication. IEEE Trans. Inf. Forens. Secur. 13(12), 3050–3063 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Vincent Despiegel for his valuable help towards giving birth to this work. Moreover, we express our gratitude to the willful guidance of Zekeriya Erkin. This work has also been partially supported by the 3IA Cöte d’Azur program (reference number ANR19-P3IA-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Ibarrondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibarrondo, A., Chabanne, H., Önen, M. (2021). Practical Privacy-Preserving Face Identification Based on Function-Hiding Functional Encryption. In: Conti, M., Stevens, M., Krenn, S. (eds) Cryptology and Network Security. CANS 2021. Lecture Notes in Computer Science(), vol 13099. Springer, Cham. https://doi.org/10.1007/978-3-030-92548-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92548-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92547-5

  • Online ISBN: 978-3-030-92548-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics