Abstract
Leveraging on function-hiding Functional Encryption (FE) and inner-product-based matching, this work presents a practical privacy-preserving face identification system with two key novelties: switching functionalities of encryption and key generation algorithms of FE to optimize matching latency while maintaining its security guarantees, and identifying output leakage to later formalize two new attacks based on it with appropriate countermeasures. We validate our scheme in a realistic face matching scenario, attesting its applicability to pseudo real-time one-use face identification scenarios like passenger identification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
More info in https://en.wikipedia.org/wiki/Biometrics#Performance.
References
Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33
Adjabi, I., Ouahabi, A., Benzaoui, A., Taleb-Ahmed, A.: Past, present, and future of face recognition: a review. Electronics 9(8), 1188 (2020)
Barbosa, M., Catalano, D., Soleimanian, A., Warinschi, B.: Efficient function-hiding functional encryption: from inner-products to orthogonality. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 127–148. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_7
Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16
Bourse, F.: Functional encryption for inner-product evaluations. Ph.D. thesis, PSL Research University (2017)
Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_7
Deng, J., Guo, J., Niannan, X., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: CVPR (2019)
Deng, J., Guo, J., Yuxiang, Z., Yu, J., Kotsia, I., Zafeiriou, S.: Retinaface: single-stage dense face localisation in the wild. In: arxiv (2019)
Gentry, C., et al.: A fully homomorphic encryption scheme, vol. 20. Stanford (2009)
Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report. 07–49, University of Massachusetts, Amherst (2007)
Jeon, S.Y., Lee, M.K.: Acceleration of inner-pairing product operation for secure biometric verification. Sensors 21(8), 2859 (2021)
Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 544–562. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_29
Kim, S., Kim, J., Seo, J.H.: A new approach to practical function-private inner product encryption. Theor. Comput. Sci. 783, 22–40 (2019)
Lee, J., Kim, D., Kim, D., Song, Y., Shin, J., Cheon, J.H.: Instant privacy-preserving biometric authentication for hamming distance. IACR Cryptol. ePrint Arch. 2018, 1214 (2018)
Project, F.: Cifer: functional encryption library (2021). https://github.com/fentec-project/CiFEr
Sabhanayagam, T., Venkatesan, V.P., Senthamaraikannan, K.: A comprehensive survey on various biometric systems. Int. J. Appl. Eng. Res. 13(5), 2276–2297 (2018)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 408–425. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45871-7_24
Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (sfcs 1986), pp. 162–167. IEEE (1986)
Zhou, K., Ren, J.: Passbio: privacy-preserving user-centric biometric authentication. IEEE Trans. Inf. Forens. Secur. 13(12), 3050–3063 (2018)
Acknowledgements
The authors thank Vincent Despiegel for his valuable help towards giving birth to this work. Moreover, we express our gratitude to the willful guidance of Zekeriya Erkin. This work has also been partially supported by the 3IA Cöte d’Azur program (reference number ANR19-P3IA-0002).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Ibarrondo, A., Chabanne, H., Önen, M. (2021). Practical Privacy-Preserving Face Identification Based on Function-Hiding Functional Encryption. In: Conti, M., Stevens, M., Krenn, S. (eds) Cryptology and Network Security. CANS 2021. Lecture Notes in Computer Science(), vol 13099. Springer, Cham. https://doi.org/10.1007/978-3-030-92548-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-92548-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92547-5
Online ISBN: 978-3-030-92548-2
eBook Packages: Computer ScienceComputer Science (R0)