Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approximation Algorithm and Hardness Results for Defensive Domination in Graphs

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2021)

Abstract

In a graph \(G=(V,E)\), a non-empty set A of k distinct vertices, is called a k-attack on G. The vertices in the set A is considered to be under attack. A set \(D \subseteq V\) can defend or counter the attack A on G if there exists a one to one function \(f: A \longmapsto D\), such that either \(f(u) =u\) or there is an edge between u and it’s image f(u), in G. A set D is called a k-defensive dominating set, if it defends against any k-attack on G. Given a graph \(G=(V,E)\), the minimum k-defensive domination problem requires us to compute a minimum cardinality k-defensive dominating set of G. When k is not fixed, it is co-NP-hard to decide if \(D \subseteq V\) is a k-defensive dominating set. However, when k is fixed, the decision version of the problem is NP-complete for general graphs. On the positive side, the problem can be solved in linear time when restricted to paths, cycles, co-chain graphs and threshold graphs for any k. In this paper, we mainly focus on the problem when \(k>0\) is fixed. We prove that the decision version of the problem remains NP-complete for bipartite graphs, this answers a question asked by Ekim et al. (Discrete Math. 343 (2) (2020)). We give lower and upper bound on the approximation ratio for the problem. Further, we show that the minimum k-defensive domination problem is APX-complete for bounded degree graphs. On the positive side, we show that the problem is efficiently solvable for complete bipartite graphs for any \(k>0\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret. Comput. Sci. 237(1–2), 123–134 (2000)

    Article  MathSciNet  Google Scholar 

  2. Chlebík, M., Chlebíková, J.: Approximation hardness of dominating set problems in bounded degree graphs. Inform. Comput. 206(11), 1264–1275 (2008)

    Article  MathSciNet  Google Scholar 

  3. Cicalese, F., Milanič, M., Vaccaro, U.: On the approximability and exact algorithms for vector domination and related problems in graphs. Discrete Appl. Math. 161(6), 750–767 (2013)

    Article  MathSciNet  Google Scholar 

  4. Dereniowski, D., Gavenčiak, T., Kratochvíl, J.: Cops, a fast robber and defensive domination on interval graphs. Theoret. Comput. Sci. 794, 47–58 (2019)

    Article  MathSciNet  Google Scholar 

  5. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: STOC 2014–Proceedings of the 2014 ACM Symposium on Theory of Computing, pp. 624–633. ACM, New York (2014)

    Google Scholar 

  6. Ekim, T., Farley, A.M., Proskurowski, A.: The complexity of the defensive domination problem in special graph classes. Discrete Math. 343(2), 111665, 13 (2020)

    Google Scholar 

  7. Ekim, T., Farley, A.M., Proskurowski, A., Shalom, M.: Defensive domination in proper interval graphs. CoRR abs/2010.03865 (2020)

    Google Scholar 

  8. Farley, A.M., Proskurowski, A.: Defensive domination. In: Proceedings of the Thirty-Fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing, vol. 168, pp. 97–107 (2004)

    Google Scholar 

  9. Haynes, T.W., Hedetniemi, S.T.: Alliances and related domination parameters. In: Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.) Structures of Domination in Graphs. DM, vol. 66, pp. 47–77. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58892-2_3

    Chapter  Google Scholar 

  10. Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.): Topics in Domination in Graphs, Developments in Mathematics, vol. 64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51117-3

    Book  Google Scholar 

  11. Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.): Structures of Domination in Graphs, vol. 66. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58892-2

    Book  MATH  Google Scholar 

  12. Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds.): Domination in Graphs: Advanced Topics, Monographs and Textbooks in Pure and Applied Mathematics, vol. 209. Marcel Dekker, Inc., New York (1998)

    Google Scholar 

  13. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, vol. 208. Marcel Dekker Inc, New York (1998)

    Google Scholar 

  14. Hedetniemi, S.T.: Algorithms and complexity of alliances in graphs. In: Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.) Structures of Domination in Graphs. DM, vol. 66, pp. 521–536. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58892-2_17

    Chapter  Google Scholar 

  15. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04565-7

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arti Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Henning, M.A., Pandey, A., Tripathi, V. (2021). Approximation Algorithm and Hardness Results for Defensive Domination in Graphs. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92681-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92680-9

  • Online ISBN: 978-3-030-92681-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics