Abstract
In recent years, machine learning techniques have been successfully applied to improve side-channel attacks against different cryptographic algorithms. In this work, we deal with the use of neural networks to attack elliptic curve-based cryptosystems. In particular, we propose a deep learning based strategy to retrieve the scalar from a double-and-add scalar-point multiplication. As a proof of concept, we conduct an effective attack against the scalar-point multiplication on NIST standard curve P-256 implemented in BearSSL, a timing side-channel hardened public library. The experimental results show that our attack strategy allows to recover the secret scalar value with a single trace from the attacked device and an exhaustive search over a set containing a few hundreds of the sought secret.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM sideāchannel(s). In: Kaliski, B.S., KoƧ, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29ā45. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_4
Barthelmeh, J.: WolfSSL (formerly cyassl) library: a small, fast, portable implementation of TLS/SSL for embedded devices (2016). https://github.com/wolfSSL/wolfssl
Batina, L., Hogenboom, J., van Woudenberg, J.G.J.: Getting more from PCA: first results of using principal component analysis for extensive power analysis. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 383ā397. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6_24
Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal collision correlation attack on elliptic curves. In: Lange, T., Lauter, K., LisonÄk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 553ā570. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7_28
Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics, Springer, New York (2006)
Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceedings of the 12th USENIX Security Symposium, Washington, D.C., USA, 4ā8 August 2003, pp. 1ā13. USENIX Association (2003). https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45ā68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3
Carbone, M., et al.: Deep learning to evaluate secure RSA implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 132ā161 (2019). https://doi.org/10.13154/tches.v2019.i2.132-161
Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., KoƧ, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13ā28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3
Danger, J.-L., Guilley, S., Hoogvorst, P., Murdica, C., Naccache, D.: Improving the big mac attack on elliptic curve cryptography. In: Ryan, P.Y.A., Naccache, D., Quisquater, J.-J. (eds.) The New Codebreakers. LNCS, vol. 9100, pp. 374ā386. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49301-4_23
Denis, F.: The Sodium cryptography library. Libsodium (2013). https://doc.libsodium.org/
Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. In: Kalai, A.T., Mohri, M. (eds.) COLT 2010 - The 23rd Conference on Learning Theory, Haifa, Israel, 27ā29 June 2010, pp. 257ā269. Omnipress (2010). http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf#page=265
Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: KoƧ, Ć.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251ā261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_21
Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426ā442. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_27
Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15ā29. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_2
Gilmore, R., Hanley, N., OāNeill, M.: Neural network based attack on a masked implementation of AES. In: IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2015, Washington, DC, USA, 5ā7 May 2015, pp. 106ā111. IEEE Computer Society (2015). https://doi.org/10.1109/HST.2015.7140247
Hanley, N., Kim, H.S., Tunstall, M.: Exploiting collisions in addition chain-based exponentiation algorithms using a single trace. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 431ā448. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_23
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings, San Diego, CA, USA, 7ā9 May 2015 (2015). http://arxiv.org/abs/1412.6980
Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104ā113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388ā397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech and Language Processing (2013)
Maghrebi, H.: Assessment of common side channel countermeasures with respect to deep learning based profiled attacks. In: 31st International Conference on Microelectronics, ICM 2019, Cairo, Egypt, 15ā18 December 2019, pp. 126ā129. IEEE (2019). https://doi.org/10.1109/ICM48031.2019.9021728
Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3ā26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1
Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets of Smart Cards. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-38162-6
Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for side-channel analysis. IACR Cryptology ePrint Archive 2019/439 (2019). https://eprint.iacr.org/2019/439
Perin, G., Chmielewski, L., Batina, L., Picek, S.: Keep it unsupervised: horizontal attacks meet deep learning. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(1), 343ā372 (2021). https://doi.org/10.46586/tches.v2021.i1.343-372
Pornin, T.: BearSSL, a smaller SSL/TLS library (2016). https://bearssl.org/index.html
Poussier, R., Zhou, Y., Standaert, F.-X.: A systematic approach to the side-channel analysis of ECC implementations with worst-case horizontal attacks. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 534ā554. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_26
Quisquater, J.J., Samyde, D.: Eddy current for magnetic analysis with active sensor. In: Proceedings of Esmart 2002, Nice, France, pp. 185ā194, September 2002
Reed, R.D., Marks, R.J.: Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks. MIT Press, Cambridge (1998)
Roelofs, N., Samwel, N., Batina, L., Daemen, J.: Online template attack on ECDSA: extracting keys via the other side. In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT 2020. LNCS, vol. 12174, pp. 323ā336. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51938-4_16
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929ā1958 (2014)
Weissbart, L., Chmielewski, Å, Picek, S., Batina, L.: Systematic side-channel analysis of Curve25519 with machine learning. J. Hardw. Syst. Secur. 4(4), 314ā328 (2020). https://doi.org/10.1007/s41635-020-00106-w
Weissbart, L., Picek, S., Batina, L.: One trace is all it takes: machine learning-based side-channel attack on EdDSA. In: Bhasin, S., Mendelson, A., Nandi, M. (eds.) SPACE 2019. LNCS, vol. 11947, pp. 86ā105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35869-3_8
Witteman, M.F., van Woudenberg, J.G.J., Menarini, F.: Defeating RSA multiply-always and message blinding countermeasures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 77ā88. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_6
Zhou, Y., Standaert, F.X.: Simplified single-trace side-channel attacks on elliptic curve scalar multiplication using fully convolutional networks. In: 40th WIC Symposium on Information Theory in the Benelux (2019). https://dial.uclouvain.be/pr/boreal/object/boreal:226275
Zotkin, Y., Olivier, F., Bourbao, E.: Deep learning vs template attacks in front of fundamental targets: experimental study. IACR Cryptology ePrint Archive 2018/1213 (2018). https://eprint.iacr.org/2018/1213
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Details ofĀ Double-and-Add Algorithm
A Details ofĀ Double-and-Add Algorithm


Rights and permissions
Copyright information
Ā© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Barenghi, A., Carrera, D., Mella, S., Pace, A., Pelosi, G., Susella, R. (2021). Profiled Attacks Against theĀ Elliptic Curve Scalar Point Multiplication Using Neural Networks. In: Yang, M., Chen, C., Liu, Y. (eds) Network and System Security. NSS 2021. Lecture Notes in Computer Science(), vol 13041. Springer, Cham. https://doi.org/10.1007/978-3-030-92708-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-92708-0_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92707-3
Online ISBN: 978-3-030-92708-0
eBook Packages: Computer ScienceComputer Science (R0)