Abstract
The use of multiple independent spanning trees (ISTs) for data broadcasting in networks provides a number of advantages, including the increase of fault-tolerance and secure message distribution. Thus, the designs of multiple ISTs on several classes of networks have been widely investigated. Kao et al. [Journal of Combinatorial Optimization 38 (2019) 972–986] proposed an algorithm to construct independent spanning trees in bubble-sort networks. The algorithm is executed in a recursive function and thus is hard to parallelize. In this paper, we focus on the problem of constructing ISTs in bubble-sort networks \(B_{n}\) and present a non-recursive algorithm. Our approach can be fully parallelized, i.e., every vertex can determine its parent in each spanning tree in constant time. This solves the open problem from the paper by Kao et al. Furthermore, we show that the total time complexity \(\mathcal {O}(n \cdot n!)\) of our algorithm is asymptotically optimal, where n is the dimension of \(B_{n}\) and n! is the number of vertices of the network.
This research was supported by the LaBRI under the “Projets émergents” program. This study has been carried out in the frame of the “Investments for the future” Programme IdEx Bordeaux - SysNum (ANR-10-IDEX-03-02).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akers, S.B., Krishnamurty, B.: A group theoretic model for symmetric interconnection networks. IEEE Trans. Comput. 38(4), 555–566 (1989)
Bao, F., Funyu, Y., Hamada, Y., Igarashi, Y.: Reliable broadcasting and secure distributing in channel networks. In: Proceedings of 3rd International Symposium on Parallel Architectures, Algorithms and Networks, ISPAN 1997, Taipei, December, pp. 472–478 (1997)
Chang, J.-M., Wang, J.-D., Yang, J.-S., Pai, K.-J.: A comment on independent spanning trees in crossed cubes. Inf. Process. Lett. 114(12), 734–739 (2014)
Chang, J.-M., Yang, T.-J., Yang, J.-S.: A parallel algorithm for constructing independent spanning trees in twisted cubes. Discret. Appl. Math. 219, 74–82 (2017)
Chang, Y.-H., Yang, J.-S., Chang, J.-M., Wang, Y.-L.: A fast parallel algorithm for constructing independent spanning trees on parity cubes. Appl. Math. Comput. 268, 489–495 (2015)
Chang, Y.-H., Yang, J.-S., Hsieh, S.-Y., Chang, J.-M., Wang, Y.-L.: Construction independent spanning trees on locally twisted cubes in parallel. J. Comb. Optim. 33(3), 956–967 (2016). https://doi.org/10.1007/s10878-016-0018-8
Cheng, D.-W., Chan, C.-T., Hsieh, S.-Y.: Constructing independent spanning trees on pancake networks. IEEE Access 8, 3427–3433 (2020)
Cheng, D.-W., Yao, K.-H., Hsieh, S.-Y.: Constructing independent spanning trees on generalized recursive circulant graphs. IEEE Access 9, 74028–74037 (2021)
Cheriyan, J., Maheshwari, S.N.: Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs. J. Algorithms 9(4), 507–537 (1988)
Curran, S., Lee, O., Yu, X.: Finding four independent trees. SIAM J. Comput. 35(5), 1023–1058 (2006)
Hasunuma, T.: Completely independent spanning trees in maximal planar graphs. In: Goos, G., Hartmanis, J., van Leeuwen, J., Kučera, L. (eds.) WG 2002. LNCS, vol. 2573, pp. 235–245. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36379-3_21
Huang, J.-F., Cheng, E., Hsieh, S.-Y.: Two algorithms for constructing independent spanning trees in \((n, k)\)-star graphs. IEEE Access 8, 175932–175947 (2020)
Huang, J.-F., Kao, S.-S., Hsieh, S.-Y., Klasing, R.: Top-down construction of independent spanning trees in alternating group networks. IEEE Access 8, 112333–112347 (2020)
Itai, A., Rodeh, M.: The multi-tree approach to reliability in distributed networks. Inf. Comput. 79(1), 43–59 (1988)
Kao, S.-S., Pai, K.-J., Hsieh, S.-Y., Wu, R.-Y., Chang, J.-M.: Amortized efficiency of constructing multiple independent spanning trees on bubble-sort networks. J. Comb. Optim. 38(3), 972–986 (2019). https://doi.org/10.1007/s10878-019-00430-0
Lakshmivarahan, S., Jwo, J., Dhall, S.K.: Symmetry in interconnection networks based on Cayley graphs of permutation groups: a survey. Parallel Comput. 19(4), 361–407 (1993)
Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, Burlington (1992)
Liu, L.-H., Chen, J.-E., Chen, S.-Q., Jia, W.-J.: An new representation for interconnection network structures. J. Cent. South Univ. Technol. 9(1), 47–53 (2002)
Lin, C.-F., Huang, J.-F., Hsieh, S.-Y.: Constructing independent spanning trees on transposition networks. IEEE Access 8, 147122–147132 (2020)
Lin, J.-C., Yang, J.-S., Hsu, C.-C., Chang, J.-M.: Independent spanning trees vs. edge-disjoint spanning trees in locally twisted cubes. Inf. Process. Lett. 110(10), 414–419 (2010)
Pai, K.-J., Yang, J.-S., Yao, S.-C., Tang, S.-M., Chang, J.-M.: Completely independent spanning trees on some interconnection networks. IEICE Trans. Inf. Syst. E97–D(9), 2514–2517 (2014)
Pai, K.-J., Chang, J.-M.: Dual-CISTs: configuring a protection routing on some Cayley networks. IEEE/ACM Trans. Netw. 27(3), 1112–1123 (2019)
Pai, K.-J., Chang, R.-S., Wu, R.-Y., Chang, J.-M.: A two-stages tree-searching algorithm for finding three completely independent spanning trees. Theoret. Comput. Sci. 784, 65–74 (2019)
Pai, K.-J., Chang, R.-S., Wu, R.-Y., Chang, J.-M.: Three completely independent spanning trees of crossed cubes with application to secure-protection routing. Inf. Sci. 541, 516–530 (2020)
Pai, K.-J., Chang, R.-S., Chang, J.-M.: Constructing dual-CISTs of pancake graphs and performance assessment of protection routings on some Cayley networks. J. Supercomput. https://doi.org/10.1007/s11227-020-03297-9
Péterfalvi, F.: Two counterexamples on completely independent spanning trees. Discret. Math. 312(4), 808–810 (2012)
Shawash, N.: Relationships among popular interconnection networks and their common generalization. Ph.D. thesis, Oakland University (2008)
Tang, S.-M., Yang, J.-S., Wang, Y.-L., Chang, J.-M.: Independent spanning trees on multidimensional torus networks. IEEE Trans. Comput. 59(1), 93–102 (2010)
Wang, Y., Fan, J., Zhou, G., Jia, X.: Independent spanning trees on twisted cubes. J. Parallel Distrib. Comput. 72(1), 58–69 (2012)
Yang, J.-S., Chan, H.-C., Chang, J.-M.: Broadcasting secure messages via optimal independent spanning trees in folded hypercubes. Discret. Appl. Math. 159(12), 1254–1263 (2011)
Yang, J.-S., Chang, J.-M.: Optimal independent spanning trees on Cartesian product of hybrid graphs. Comput. J. 57(1), 93–99 (2014)
Yang, J.-S., Chang, J.-M., Pai, K.-J., Chan, H.-C.: Parallel construction of independent spanning trees on enhanced hypercubes. IEEE Trans. Parallel Distrib. Syst. 26(11), 3090–3098 (2015)
Yang, J.-S., Chang, J.-M., Tang, S.-M., Wang, Y.-L.: Reducing the height of independent spanning trees in chordal rings. IEEE Trans. Parallel Distrib. Syst. 18(5), 644–657 (2007)
Yang, J.-S., Chang, J.-M., Tang, S.-M., Wang, Y.-L.: On the independent spanning trees of recursive circulant graphs \(G(cd^m, d)\) with \(d\,{>}\,2\). Theoret. Comput. Sci. 410(21–23), 2001–2010 (2009)
Yang, J.-S., Chang, J.-M., Tang, S.-M., Wang, Y.-L.: Constructing multiple independent spanning trees on recursive circulant graphs \(G(2^m,2)\). Int. J. Found. Comput. Sci. 21(1), 73–90 (2010)
Yang, J.-S., Luo, S.-S., Chang, J.-M.: Pruning longer branches of independent spanning trees on folded hyper-stars. Comput. J. 58(11), 2972–2981 (2015)
Yang, J.-S., Tang, S.-M., Chang, J.-M., Wang, Y.-L.: Parallel construction of optimal independent spanning trees on hypercubes. Parallel Comput. 33(1), 73–79 (2007)
Yang, J.-S., Wu, M.-R., Chang, J.-M., Chang, Y.-H.: A fully parallelized scheme of constructing independent spanning trees on Möbius cubes. J. Supercomput. 71(3), 952–965 (2014). https://doi.org/10.1007/s11227-014-1346-z
Yang, Y.-C., Kao, S.-S., Klasing, R., Hsieh, S.-Y., Chou, H.-H., Chang, J.-M.: The construction of multiple independent spanning trees on burnt pancake networks. IEEE Access 9, 16679–16691 (2021)
Zehavi, A., Itai, A.: Three tree-paths. J. Graph Theory 13(2), 175–188 (1989)
Zhao, S.-L., Hao, R.-X.: The generalized connectivity of (\(n\), \(k\))-bubble-sort graphs. Comput. J. 62(9), 1277–1283 (2019)
Zhao, S.-L., Hao, R.-X.: The fault tolerance of (\(n\), \(k\))-bubble-sort networks. Discret. Appl. Math. 285, 204–211 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kao, SS., Klasing, R., Hung, LJ., Hsieh, SY. (2021). A Parallel Algorithm for Constructing Multiple Independent Spanning Trees in Bubble-Sort Networks. In: Wu, W., Du, H. (eds) Algorithmic Aspects in Information and Management. AAIM 2021. Lecture Notes in Computer Science(), vol 13153. Springer, Cham. https://doi.org/10.1007/978-3-030-93176-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-93176-6_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93175-9
Online ISBN: 978-3-030-93176-6
eBook Packages: Computer ScienceComputer Science (R0)