Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Parallel Algorithm for Constructing Multiple Independent Spanning Trees in Bubble-Sort Networks

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13153))

Included in the following conference series:

  • 610 Accesses

Abstract

The use of multiple independent spanning trees (ISTs) for data broadcasting in networks provides a number of advantages, including the increase of fault-tolerance and secure message distribution. Thus, the designs of multiple ISTs on several classes of networks have been widely investigated. Kao et al. [Journal of Combinatorial Optimization 38 (2019) 972–986] proposed an algorithm to construct independent spanning trees in bubble-sort networks. The algorithm is executed in a recursive function and thus is hard to parallelize. In this paper, we focus on the problem of constructing ISTs in bubble-sort networks \(B_{n}\) and present a non-recursive algorithm. Our approach can be fully parallelized, i.e., every vertex can determine its parent in each spanning tree in constant time. This solves the open problem from the paper by Kao et al. Furthermore, we show that the total time complexity \(\mathcal {O}(n \cdot n!)\) of our algorithm is asymptotically optimal, where n is the dimension of \(B_{n}\) and n! is the number of vertices of the network.

This research was supported by the LaBRI under the “Projets émergents” program. This study has been carried out in the frame of the “Investments for the future” Programme IdEx Bordeaux - SysNum (ANR-10-IDEX-03-02).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akers, S.B., Krishnamurty, B.: A group theoretic model for symmetric interconnection networks. IEEE Trans. Comput. 38(4), 555–566 (1989)

    Article  MathSciNet  Google Scholar 

  2. Bao, F., Funyu, Y., Hamada, Y., Igarashi, Y.: Reliable broadcasting and secure distributing in channel networks. In: Proceedings of 3rd International Symposium on Parallel Architectures, Algorithms and Networks, ISPAN 1997, Taipei, December, pp. 472–478 (1997)

    Google Scholar 

  3. Chang, J.-M., Wang, J.-D., Yang, J.-S., Pai, K.-J.: A comment on independent spanning trees in crossed cubes. Inf. Process. Lett. 114(12), 734–739 (2014)

    Article  MathSciNet  Google Scholar 

  4. Chang, J.-M., Yang, T.-J., Yang, J.-S.: A parallel algorithm for constructing independent spanning trees in twisted cubes. Discret. Appl. Math. 219, 74–82 (2017)

    Article  MathSciNet  Google Scholar 

  5. Chang, Y.-H., Yang, J.-S., Chang, J.-M., Wang, Y.-L.: A fast parallel algorithm for constructing independent spanning trees on parity cubes. Appl. Math. Comput. 268, 489–495 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Chang, Y.-H., Yang, J.-S., Hsieh, S.-Y., Chang, J.-M., Wang, Y.-L.: Construction independent spanning trees on locally twisted cubes in parallel. J. Comb. Optim. 33(3), 956–967 (2016). https://doi.org/10.1007/s10878-016-0018-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, D.-W., Chan, C.-T., Hsieh, S.-Y.: Constructing independent spanning trees on pancake networks. IEEE Access 8, 3427–3433 (2020)

    Article  Google Scholar 

  8. Cheng, D.-W., Yao, K.-H., Hsieh, S.-Y.: Constructing independent spanning trees on generalized recursive circulant graphs. IEEE Access 9, 74028–74037 (2021)

    Article  Google Scholar 

  9. Cheriyan, J., Maheshwari, S.N.: Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs. J. Algorithms 9(4), 507–537 (1988)

    Article  MathSciNet  Google Scholar 

  10. Curran, S., Lee, O., Yu, X.: Finding four independent trees. SIAM J. Comput. 35(5), 1023–1058 (2006)

    Article  MathSciNet  Google Scholar 

  11. Hasunuma, T.: Completely independent spanning trees in maximal planar graphs. In: Goos, G., Hartmanis, J., van Leeuwen, J., Kučera, L. (eds.) WG 2002. LNCS, vol. 2573, pp. 235–245. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36379-3_21

    Chapter  MATH  Google Scholar 

  12. Huang, J.-F., Cheng, E., Hsieh, S.-Y.: Two algorithms for constructing independent spanning trees in \((n, k)\)-star graphs. IEEE Access 8, 175932–175947 (2020)

    Article  Google Scholar 

  13. Huang, J.-F., Kao, S.-S., Hsieh, S.-Y., Klasing, R.: Top-down construction of independent spanning trees in alternating group networks. IEEE Access 8, 112333–112347 (2020)

    Article  Google Scholar 

  14. Itai, A., Rodeh, M.: The multi-tree approach to reliability in distributed networks. Inf. Comput. 79(1), 43–59 (1988)

    Article  MathSciNet  Google Scholar 

  15. Kao, S.-S., Pai, K.-J., Hsieh, S.-Y., Wu, R.-Y., Chang, J.-M.: Amortized efficiency of constructing multiple independent spanning trees on bubble-sort networks. J. Comb. Optim. 38(3), 972–986 (2019). https://doi.org/10.1007/s10878-019-00430-0

    Article  MathSciNet  MATH  Google Scholar 

  16. Lakshmivarahan, S., Jwo, J., Dhall, S.K.: Symmetry in interconnection networks based on Cayley graphs of permutation groups: a survey. Parallel Comput. 19(4), 361–407 (1993)

    Article  MathSciNet  Google Scholar 

  17. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, Burlington (1992)

    MATH  Google Scholar 

  18. Liu, L.-H., Chen, J.-E., Chen, S.-Q., Jia, W.-J.: An new representation for interconnection network structures. J. Cent. South Univ. Technol. 9(1), 47–53 (2002)

    Article  Google Scholar 

  19. Lin, C.-F., Huang, J.-F., Hsieh, S.-Y.: Constructing independent spanning trees on transposition networks. IEEE Access 8, 147122–147132 (2020)

    Article  Google Scholar 

  20. Lin, J.-C., Yang, J.-S., Hsu, C.-C., Chang, J.-M.: Independent spanning trees vs. edge-disjoint spanning trees in locally twisted cubes. Inf. Process. Lett. 110(10), 414–419 (2010)

    Article  MathSciNet  Google Scholar 

  21. Pai, K.-J., Yang, J.-S., Yao, S.-C., Tang, S.-M., Chang, J.-M.: Completely independent spanning trees on some interconnection networks. IEICE Trans. Inf. Syst. E97–D(9), 2514–2517 (2014)

    Article  Google Scholar 

  22. Pai, K.-J., Chang, J.-M.: Dual-CISTs: configuring a protection routing on some Cayley networks. IEEE/ACM Trans. Netw. 27(3), 1112–1123 (2019)

    Article  MathSciNet  Google Scholar 

  23. Pai, K.-J., Chang, R.-S., Wu, R.-Y., Chang, J.-M.: A two-stages tree-searching algorithm for finding three completely independent spanning trees. Theoret. Comput. Sci. 784, 65–74 (2019)

    Article  MathSciNet  Google Scholar 

  24. Pai, K.-J., Chang, R.-S., Wu, R.-Y., Chang, J.-M.: Three completely independent spanning trees of crossed cubes with application to secure-protection routing. Inf. Sci. 541, 516–530 (2020)

    Article  MathSciNet  Google Scholar 

  25. Pai, K.-J., Chang, R.-S., Chang, J.-M.: Constructing dual-CISTs of pancake graphs and performance assessment of protection routings on some Cayley networks. J. Supercomput. https://doi.org/10.1007/s11227-020-03297-9

  26. Péterfalvi, F.: Two counterexamples on completely independent spanning trees. Discret. Math. 312(4), 808–810 (2012)

    Article  MathSciNet  Google Scholar 

  27. Shawash, N.: Relationships among popular interconnection networks and their common generalization. Ph.D. thesis, Oakland University (2008)

    Google Scholar 

  28. Tang, S.-M., Yang, J.-S., Wang, Y.-L., Chang, J.-M.: Independent spanning trees on multidimensional torus networks. IEEE Trans. Comput. 59(1), 93–102 (2010)

    Article  MathSciNet  Google Scholar 

  29. Wang, Y., Fan, J., Zhou, G., Jia, X.: Independent spanning trees on twisted cubes. J. Parallel Distrib. Comput. 72(1), 58–69 (2012)

    Article  Google Scholar 

  30. Yang, J.-S., Chan, H.-C., Chang, J.-M.: Broadcasting secure messages via optimal independent spanning trees in folded hypercubes. Discret. Appl. Math. 159(12), 1254–1263 (2011)

    Article  MathSciNet  Google Scholar 

  31. Yang, J.-S., Chang, J.-M.: Optimal independent spanning trees on Cartesian product of hybrid graphs. Comput. J. 57(1), 93–99 (2014)

    Article  Google Scholar 

  32. Yang, J.-S., Chang, J.-M., Pai, K.-J., Chan, H.-C.: Parallel construction of independent spanning trees on enhanced hypercubes. IEEE Trans. Parallel Distrib. Syst. 26(11), 3090–3098 (2015)

    Article  Google Scholar 

  33. Yang, J.-S., Chang, J.-M., Tang, S.-M., Wang, Y.-L.: Reducing the height of independent spanning trees in chordal rings. IEEE Trans. Parallel Distrib. Syst. 18(5), 644–657 (2007)

    Article  Google Scholar 

  34. Yang, J.-S., Chang, J.-M., Tang, S.-M., Wang, Y.-L.: On the independent spanning trees of recursive circulant graphs \(G(cd^m, d)\) with \(d\,{>}\,2\). Theoret. Comput. Sci. 410(21–23), 2001–2010 (2009)

    Google Scholar 

  35. Yang, J.-S., Chang, J.-M., Tang, S.-M., Wang, Y.-L.: Constructing multiple independent spanning trees on recursive circulant graphs \(G(2^m,2)\). Int. J. Found. Comput. Sci. 21(1), 73–90 (2010)

    Article  Google Scholar 

  36. Yang, J.-S., Luo, S.-S., Chang, J.-M.: Pruning longer branches of independent spanning trees on folded hyper-stars. Comput. J. 58(11), 2972–2981 (2015)

    Article  Google Scholar 

  37. Yang, J.-S., Tang, S.-M., Chang, J.-M., Wang, Y.-L.: Parallel construction of optimal independent spanning trees on hypercubes. Parallel Comput. 33(1), 73–79 (2007)

    Article  MathSciNet  Google Scholar 

  38. Yang, J.-S., Wu, M.-R., Chang, J.-M., Chang, Y.-H.: A fully parallelized scheme of constructing independent spanning trees on Möbius cubes. J. Supercomput. 71(3), 952–965 (2014). https://doi.org/10.1007/s11227-014-1346-z

    Article  Google Scholar 

  39. Yang, Y.-C., Kao, S.-S., Klasing, R., Hsieh, S.-Y., Chou, H.-H., Chang, J.-M.: The construction of multiple independent spanning trees on burnt pancake networks. IEEE Access 9, 16679–16691 (2021)

    Article  Google Scholar 

  40. Zehavi, A., Itai, A.: Three tree-paths. J. Graph Theory 13(2), 175–188 (1989)

    Article  MathSciNet  Google Scholar 

  41. Zhao, S.-L., Hao, R.-X.: The generalized connectivity of (\(n\), \(k\))-bubble-sort graphs. Comput. J. 62(9), 1277–1283 (2019)

    MathSciNet  Google Scholar 

  42. Zhao, S.-L., Hao, R.-X.: The fault tolerance of (\(n\), \(k\))-bubble-sort networks. Discret. Appl. Math. 285, 204–211 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Shun Kao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kao, SS., Klasing, R., Hung, LJ., Hsieh, SY. (2021). A Parallel Algorithm for Constructing Multiple Independent Spanning Trees in Bubble-Sort Networks. In: Wu, W., Du, H. (eds) Algorithmic Aspects in Information and Management. AAIM 2021. Lecture Notes in Computer Science(), vol 13153. Springer, Cham. https://doi.org/10.1007/978-3-030-93176-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93176-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93175-9

  • Online ISBN: 978-3-030-93176-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics