Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Synthetic Data Augmentation of Cycling Sport Training Datasets

  • Conference paper
  • First Online:
Intelligent Computing & Optimization (ICO 2021)

Abstract

Planning sport sessions automatically is becoming a very important aspect of improving an athlete’s fitness. So far, many Artificial Intelligence methods have been proposed for planning sport training sessions. These methods depend largely on test data, where Machine Learning models are built, yet evaluated later. However, one of the biggest concerns of Machine Learning is dealing with data that are not present in the training dataset, but are unavoidable for predicting the further improvements. This also represents a bottleneck in the domain of Sport Training, where algorithms can hardly predict the future training sessions that are compiled with the attributes of features presented in a training dataset. Usually, this results in an under-trained trainee. In this paper we look on this problem, and propose a novel method for synthetic data augmentation applied on the original dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, H., Coggan, A.R., McGregor, S.: Training and Racing with a Power Meter, 3rd edn. VeloPress, Boulder (2019)

    Google Scholar 

  2. Banister, E.W.: Modeling elite athletic performance. Physiol. Test. Elite Athletes 347, 403–422 (1991)

    Google Scholar 

  3. Clark, M.A., Lucett, S.C., Sutton, B.G.: NASM Essentials of Personal Fitness Training, 4th edn. Jones & Bartlett Learning, Burlington (2014)

    Google Scholar 

  4. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 113–123 (2019)

    Google Scholar 

  5. Fister, I., Fister Jr., I., Fister, D.: Computational Intelligence in Sports. ALO, vol. 22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03490-0

    Book  MATH  Google Scholar 

  6. Fister, I., Rauter, S., Yang, X.-S., Ljubič, K., Fister Jr., I.: Planning the sports training sessions with the bat algorithm. Neurocomputing 149, 993–1002 (2015)

    Google Scholar 

  7. Fister Jr., I., Vrbancic, G., Brezočnik, L., Podgorelec, V., Fister, I.: SportyDataGen: an online generator of endurance sports activity collections. In: CECIIS: Central European Conference on Information and Intelligent Systems, pp. 171–178. IEEE (2018)

    Google Scholar 

  8. Frans, K., Ho, J., Chen, X., Abbeel, P., Schulman, J.: Meta learning shared hierarchies. arXiv preprint arXiv:1710.09767 (2017)

  9. Friel, J.: The Cyclist’s Training Bible: The World’s Most Comprehensive Training Guide, 5th edn. VeloPress, Boulder (2018)

    Google Scholar 

  10. Goodfellow, I.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  12. Iwana, B.K., Uchida, S.: An empirical survey of data augmentation for time series classification with neural networks. PLoS ONE 16(7), e0254841 (2021)

    Article  Google Scholar 

  13. Jing, Y., Yang, Y., Feng, Z., Ye, J., Yizhou, Yu., Song, M.: Neural style transfer: a review. IEEE Trans. Visual. Comput. Graph. 26(11), 3365–3385 (2019)

    Article  Google Scholar 

  14. Kauwe, S.K., Graser, J., Murdock, R., Sparks, T.D.: Can machine learning find extraordinary materials? Comput. Mater. Sci. 174, 109498 (2020)

    Google Scholar 

  15. Khalifa, N.E., Loey, M., Mirjalili, S.: A comprehensive survey of recent trends in deep learning for digital images augmentation. Artif. Intell. Rev., 1–27 (2021)

    Google Scholar 

  16. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  17. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  18. Lemley, J., Bazrafkan, S., Corcoran, P.: Smart augmentation learning an optimal data augmentation strategy. IEEE Access 5, 5858–5869 (2017)

    Article  Google Scholar 

  19. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  20. Rauter, S.: New approach for planning the mountain bike training with virtual coach (2018)

    Google Scholar 

  21. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Google Scholar 

  22. Silacci, A., Taiar, R., Caon, M.: Towards an AI-based tailored training planning for road cyclists: a case study. Appl. Sci. 11(1), 313 (2021)

    Article  Google Scholar 

  23. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Wang, J., Perez, L., et al.: The effectiveness of data augmentation in image classification using deep learning. Convolutional Neural Netw. Vis. Recogn. 11, 1–8 (2017)

    Google Scholar 

  25. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iztok Fister Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fister, I., Vrbančič, G., Podgorelec, V., Fister, I. (2022). Synthetic Data Augmentation of Cycling Sport Training Datasets. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing & Optimization. ICO 2021. Lecture Notes in Networks and Systems, vol 371. Springer, Cham. https://doi.org/10.1007/978-3-030-93247-3_7

Download citation

Publish with us

Policies and ethics