Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Literature Review on the MPPT Techniques Applied in Wind Energy Harvesting System

  • Conference paper
  • First Online:
Intelligent Computing & Optimization (ICO 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 371))

Included in the following conference series:

  • 1396 Accesses

Abstract

Wind energy harvesting system (WEHS) is one of the promising renewable energy system (RES) that generates clean energy to power the grid or stand-alone load located at remote areas connected through the power electronic devices. Wind turbines convert kinetic energy created due to motion of wind to mechanical energy and then to electrical energy using generator. The output of PMSG varies depending on the variation of wind speed. The maximum power point tracking (MPPT) controller is used to drive the WEHS at the maximum speed that corresponds to optimum power at any wind speed. The works carried out by several researchers on modeling of WEHS using different MPPT techniques are reviewed as under. The detailed literature review on the MPPT techniques applied in WEHS is presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rahman, M.A., Rahim, A.H.M.A.: An efficient wind speed sensor-less MPPT controller using adaptive neuro-fuzzy inference system. In: 2015 International Conference on Advances in Electrical Engineering (ICAEE), Bangladesh (2015)

    Google Scholar 

  2. Bisoyi, S.K., Jarial, R.K., Gupta, R.A., Bisoyi, S.K., Jarial, R.K., Gupta, R.A.: Modeling and analysis of variable speed wind turbine equipped with PMSG. Int. J. Curr. Eng. Technol. 2, 421–426 (2014)

    Article  Google Scholar 

  3. Ndirangu, J.G., Nderu, J.N., Maina, C.M., Muhia, A.M.: Power output maximization of a PMSG based standalone wind energy conversion system using fuzzy logic. IOSR J. Electr. Electron. Eng. 11(1), 58–66 (2016)

    Google Scholar 

  4. Jafari Nadoushan, M.H., Akhbari, M.: Optimal torque control of PMSG-based stand-alone wind turbine with energy storage system. J. Electr. Power Energy Convers. Syst. 1(2), 52–59 (2016)

    Google Scholar 

  5. Pindoriya, R.M., Usman, A., Rajpurohit, B.S., Srivastava, K.N.: PMSG based wind energy generation system: energy maximization and its control. In: 7th International Conference on Power Systems (ICPS) (2017)

    Google Scholar 

  6. Mohamed, A.B., Massoum, A., Allaoui, T., Zine, S.: Modelling and control of standalone wind energy conversion system. Int. J. Adv. Eng. Technol. 6(6), 2382–2390 (2014)

    Google Scholar 

  7. Zebraoui, O., Bouzi, M.: Comparative study of different MPPT methods for wind energy conversion system. In: IOP Conference Series: Earth and Environmental Science (2018)

    Google Scholar 

  8. Syahputra, R., Soesanti, I.: Performance improvement for small-scale wind turbine system based on maximum power point tracking control. Energies 12(20), 3938 (2019)

    Article  Google Scholar 

  9. Harrag, A., Messalti, S.: Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller. Renew. Sustain. Energy Rev. 49, 1247–1260 (2015)

    Article  Google Scholar 

  10. Kumar, D., Chatterjee, K.: A review of conventional and advanced MPPT algorithms for wind energy systems. Renew. Sustain. Energy Rev. 55, 957–970 (2016)

    Article  Google Scholar 

  11. Hannachi, M., Elbeji, O., Benhamed, M., Sbita, L.: Optimal torque maximum power point technique for wind turbine: proportional–integral controller tuning based on particle swarm optimization. Wind Eng. 45(2), 337–350 (2020)

    Article  Google Scholar 

  12. Saidi, Y., Mezouar, A., Miloud, Y., Brahmi, B., Kerrouche, K.D.E., Benmahdjoub, M.A.: Adaptive maximum power control based on optimum torque method for wind turbine by using fuzzy-logic adaption mechanisms during partial load operation. Periodica Polytechnica Electr. Eng. Comput. Sci. 64(2), 170–178 (2020)

    Article  Google Scholar 

  13. Jha, K., Dahiya, R.: Comparative study of Perturb & Observe (P&O) and Incremental Conductance (IC) MPPT technique of PV system. In: Dutta, D., Mahanty, B. (eds.) Numerical Optimization in Engineering and Sciences. AISC, vol. 979, pp. 191–199. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3215-3_18

    Chapter  Google Scholar 

  14. Mousa, H.H., Youssef, A.R., Mohamed, E.E.: Variable step size P&O MPPT algorithm for optimal power extraction of multi-phase PMSG based wind generation system. Int. J. Electr. Power Energy Syst. 108, 218–231 (2019)

    Article  Google Scholar 

  15. Mengi, O.O., Altas, I.H.: Fuzzy logic control for a wind/battery renewable energy production system. Turk. J. Electr. Eng. Comput. Sci. 20(2), 187–206 (2012)

    Google Scholar 

  16. Lakhal, Y., Baghli, F.Z., El Bakkali, L.: Fuzzy Logic Control Strategy for tracking the maximum power point of a horizontal axis wind turbine. In: 8th International Conference Interdiscipilinarity in Engineering, Romania, vol. 19 (2014)

    Google Scholar 

  17. Minh, H.Q., Frederic, N., Najib, E., Abdelaziz, H.: Power management of a variable speed wind turbine for stand-alone system using fuzzy logic. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1404–1410. IEEE (2011)

    Google Scholar 

  18. Kesraoui, M., Lagraf, S.A., Chaib, A.: Aerodynamic power control of wind turbine using fuzzy logic. In: 3rd International Renewable and Sustainable Energy Conference (IRSEC), Algeria (2015)

    Google Scholar 

  19. Chakraborty, N., Barma, M.D.: Modelling of stand –alone wind energy conversion system using fuzzy logic controller. Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng. 2(1), 861–868 (2014)

    Google Scholar 

  20. Eltamaly, A.M., Farh, H.M.: Maximum power extraction from wind energy system based on fuzzy logic control. Electr. Power Syst. Res. 97, 144–150 (2013)

    Article  Google Scholar 

  21. Sekhar, V.: Modified fuzzy logic based control strategy for grid connected wind energy conversion system. J. Green Eng. 6(4), 369–384 (2016)

    Article  Google Scholar 

  22. Rosyadi, M., Muyeen, S.M., Takahashi, R., Tamura, J.: A design fuzzy logic controller for a permanent magnet wind generator to enhance the dynamic stability of wind farms. Appl. Sci. 2, 780–800 (2012)

    Article  Google Scholar 

  23. Altas, I.H., Mengi, O.O.: A Fuzzy Logic Voltage Controller for off-grid wind turbine/supercapacitor renewable energy source. In: 8th International Conference on Electrical and Electronics Engineering (ELECO) (2013)

    Google Scholar 

  24. Gencer, A.: Modelling of operation PMSG based on fuzzy logic control under different load conditions. In: 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Turkey (2017)

    Google Scholar 

  25. Baskar, M., Jamuna, V.: Green energy generation using FLC based WECS with lithium ion polymer batteries. Braz. Arch. Biol. Technol. 59(2), 1–15 (2016)

    Google Scholar 

  26. Chaicharoenaudomrung, K., Areerak, K., Areerak, K., Bozhko, S., Hill, C.I.: Maximum power point tracking for stand-alone wind energy conversion system using FLC-P&O method. IEEJ Trans. Electr. Electron. Eng. 15(12), 1723 (2020)

    Article  Google Scholar 

  27. Petrila, D., Blaabjerg, F., Muntean, N., Lascu, C.: Fuzzy logic based MPPT controller for a small wind turbine system. In: 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) (2012)

    Google Scholar 

  28. Amine, H.M., Abdelaziz, H., Najib, E.: Wind turbine maximum power point tracking using FLC tuned with GA. Energy Procedia 62, 364–373 (2014)

    Article  Google Scholar 

  29. El-Tamaly, H.H., Nassef, A.Y.: Tip speed ratio and Pitch angle control based on ANN for putting variable speed WTG on MPP. In: Eighteenth International Middle East Power Systems Conference (MEPCON) (2016)

    Google Scholar 

  30. Li, H., Shi, K.L., McLaren, P.G.: Neural-network-based sensorless maximum wind energy capture with compensated power coefficient. IEEE Trans. Ind. Appl. 41(6), 1548–1556 (2005)

    Article  Google Scholar 

  31. Thongam, J.S., Bouchard, P., Ezzaidi, H., Ouhrouche, M.: Artificial neural network-based maximum power point TrackingControl for variable speed wind energy conversion systems. In: Control Applications, (CCA) & Intelligent Control, Saint Petersburg, Russia (2009)

    Google Scholar 

  32. Ren, Y.F., Bao, G.Q.: Control strategy of maximum wind energy capture of direct-drive wind turbine generator based on neural-network. In: Asia-Pacific Power and Energy Engineering Conference, China (2010)

    Google Scholar 

  33. Hayati, M., Rezaei, A., Noori, L.: Application of radial basis function network for the modeling and simulation of turbogenerator. J. Adv. Inf. Technol. 4(2), 76–79 (2013)

    Google Scholar 

  34. Yilmaz, A.S., Ozer, Z.: Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks. Expert Syst. Appl. 36(6), 9767–9775 (2009)

    Article  Google Scholar 

  35. Sabzevari, S., Karimpour, A., Monfared, M., Naghibi Sistani, M.B.: MPPT control of wind turbines by direct adaptive fuzzy-PI controller and using ANN-PSO wind speed estimator. J. Renew. Sustain. Energy 9(1), 013302 (2017)

    Article  Google Scholar 

  36. Oguz, Y., Guney, I.: Adaptive neuro-fuzzy inference system to improve the power quality of variable-speed wind power generation system. Turk. J. Electr. Eng. Comput. Sci. 18(4), 625–645 (2010)

    Google Scholar 

  37. Meharrar, A., Tioursi, M., Hatti, M., Stambouli, A.B.: A variable speed wind generator maximum power tracking based on adaptative neuro-fuzzy inference system. Expert Syst. Appl. 38, 7659–7664 (2011)

    Article  Google Scholar 

  38. Slah, H., Mehdi, D., Lassaad, S.: Advanced control of a PMSG wind turbine. Int. J. Mod. Nonlinear Theory Appl. 5, 1–10 (2016)

    Article  Google Scholar 

  39. Jemaa, A., Zarrad, O., Mansouri, M.: Performance assessment of a wind turbine with variable speed wind using artificial neural network and neuro-fuzzy controllers. Int. J. Syst. Appl. Eng. Dev. 11(3), 167–172 (2017)

    Google Scholar 

  40. Ali, A., Moussa, A., Abdelatif, K., Eissa, M., Wasfy, S., Malik, O.P.: ANFIS based controller for rectifier of PMSG wind energy conversion system energy conversion system. In: 2014 IEEE Electrical Power and Energy Conference IEEE (2014)

    Google Scholar 

  41. Sitharthan, R., Geethanjali, M.: ANFIS based wind speed sensor-less MPPT controller for variable speed wind energy conversion systems. Aust. J. Basic Appl. Sci. 8(18), 14–23 (2014)

    Google Scholar 

  42. Padmaja, A., Srikanth, M.: Design of MPPT controller using ANFIS and HOMER based sensitivity analysis for MXS 60 PV module. Int. J. Innov. Res. Adv. Eng. (IJIRAE) 11(2), 40–50 (2014)

    Google Scholar 

  43. Muthukumari, T., Raghavendiran, T.A., Kalaivani, R., Selvaraj, P.: Intelligent tuned PID controller for wind energy conversion system with permanent magnet synchronous generator and AC-DC-AC converters. IAES Int. J. Robot. Autom. 8(2), 133 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors wish to extend their great gratitude to Punjabi university Patiala, and Ministry of science and higher education of Ethiopia.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mitiku, T., Manshahia, M.S. (2022). A Literature Review on the MPPT Techniques Applied in Wind Energy Harvesting System. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing & Optimization. ICO 2021. Lecture Notes in Networks and Systems, vol 371. Springer, Cham. https://doi.org/10.1007/978-3-030-93247-3_73

Download citation

Publish with us

Policies and ethics