Abstract
Wind energy harvesting system (WEHS) is one of the promising renewable energy system (RES) that generates clean energy to power the grid or stand-alone load located at remote areas connected through the power electronic devices. Wind turbines convert kinetic energy created due to motion of wind to mechanical energy and then to electrical energy using generator. The output of PMSG varies depending on the variation of wind speed. The maximum power point tracking (MPPT) controller is used to drive the WEHS at the maximum speed that corresponds to optimum power at any wind speed. The works carried out by several researchers on modeling of WEHS using different MPPT techniques are reviewed as under. The detailed literature review on the MPPT techniques applied in WEHS is presented in this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rahman, M.A., Rahim, A.H.M.A.: An efficient wind speed sensor-less MPPT controller using adaptive neuro-fuzzy inference system. In: 2015 International Conference on Advances in Electrical Engineering (ICAEE), Bangladesh (2015)
Bisoyi, S.K., Jarial, R.K., Gupta, R.A., Bisoyi, S.K., Jarial, R.K., Gupta, R.A.: Modeling and analysis of variable speed wind turbine equipped with PMSG. Int. J. Curr. Eng. Technol. 2, 421–426 (2014)
Ndirangu, J.G., Nderu, J.N., Maina, C.M., Muhia, A.M.: Power output maximization of a PMSG based standalone wind energy conversion system using fuzzy logic. IOSR J. Electr. Electron. Eng. 11(1), 58–66 (2016)
Jafari Nadoushan, M.H., Akhbari, M.: Optimal torque control of PMSG-based stand-alone wind turbine with energy storage system. J. Electr. Power Energy Convers. Syst. 1(2), 52–59 (2016)
Pindoriya, R.M., Usman, A., Rajpurohit, B.S., Srivastava, K.N.: PMSG based wind energy generation system: energy maximization and its control. In: 7th International Conference on Power Systems (ICPS) (2017)
Mohamed, A.B., Massoum, A., Allaoui, T., Zine, S.: Modelling and control of standalone wind energy conversion system. Int. J. Adv. Eng. Technol. 6(6), 2382–2390 (2014)
Zebraoui, O., Bouzi, M.: Comparative study of different MPPT methods for wind energy conversion system. In: IOP Conference Series: Earth and Environmental Science (2018)
Syahputra, R., Soesanti, I.: Performance improvement for small-scale wind turbine system based on maximum power point tracking control. Energies 12(20), 3938 (2019)
Harrag, A., Messalti, S.: Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller. Renew. Sustain. Energy Rev. 49, 1247–1260 (2015)
Kumar, D., Chatterjee, K.: A review of conventional and advanced MPPT algorithms for wind energy systems. Renew. Sustain. Energy Rev. 55, 957–970 (2016)
Hannachi, M., Elbeji, O., Benhamed, M., Sbita, L.: Optimal torque maximum power point technique for wind turbine: proportional–integral controller tuning based on particle swarm optimization. Wind Eng. 45(2), 337–350 (2020)
Saidi, Y., Mezouar, A., Miloud, Y., Brahmi, B., Kerrouche, K.D.E., Benmahdjoub, M.A.: Adaptive maximum power control based on optimum torque method for wind turbine by using fuzzy-logic adaption mechanisms during partial load operation. Periodica Polytechnica Electr. Eng. Comput. Sci. 64(2), 170–178 (2020)
Jha, K., Dahiya, R.: Comparative study of Perturb & Observe (P&O) and Incremental Conductance (IC) MPPT technique of PV system. In: Dutta, D., Mahanty, B. (eds.) Numerical Optimization in Engineering and Sciences. AISC, vol. 979, pp. 191–199. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3215-3_18
Mousa, H.H., Youssef, A.R., Mohamed, E.E.: Variable step size P&O MPPT algorithm for optimal power extraction of multi-phase PMSG based wind generation system. Int. J. Electr. Power Energy Syst. 108, 218–231 (2019)
Mengi, O.O., Altas, I.H.: Fuzzy logic control for a wind/battery renewable energy production system. Turk. J. Electr. Eng. Comput. Sci. 20(2), 187–206 (2012)
Lakhal, Y., Baghli, F.Z., El Bakkali, L.: Fuzzy Logic Control Strategy for tracking the maximum power point of a horizontal axis wind turbine. In: 8th International Conference Interdiscipilinarity in Engineering, Romania, vol. 19 (2014)
Minh, H.Q., Frederic, N., Najib, E., Abdelaziz, H.: Power management of a variable speed wind turbine for stand-alone system using fuzzy logic. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1404–1410. IEEE (2011)
Kesraoui, M., Lagraf, S.A., Chaib, A.: Aerodynamic power control of wind turbine using fuzzy logic. In: 3rd International Renewable and Sustainable Energy Conference (IRSEC), Algeria (2015)
Chakraborty, N., Barma, M.D.: Modelling of stand –alone wind energy conversion system using fuzzy logic controller. Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng. 2(1), 861–868 (2014)
Eltamaly, A.M., Farh, H.M.: Maximum power extraction from wind energy system based on fuzzy logic control. Electr. Power Syst. Res. 97, 144–150 (2013)
Sekhar, V.: Modified fuzzy logic based control strategy for grid connected wind energy conversion system. J. Green Eng. 6(4), 369–384 (2016)
Rosyadi, M., Muyeen, S.M., Takahashi, R., Tamura, J.: A design fuzzy logic controller for a permanent magnet wind generator to enhance the dynamic stability of wind farms. Appl. Sci. 2, 780–800 (2012)
Altas, I.H., Mengi, O.O.: A Fuzzy Logic Voltage Controller for off-grid wind turbine/supercapacitor renewable energy source. In: 8th International Conference on Electrical and Electronics Engineering (ELECO) (2013)
Gencer, A.: Modelling of operation PMSG based on fuzzy logic control under different load conditions. In: 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Turkey (2017)
Baskar, M., Jamuna, V.: Green energy generation using FLC based WECS with lithium ion polymer batteries. Braz. Arch. Biol. Technol. 59(2), 1–15 (2016)
Chaicharoenaudomrung, K., Areerak, K., Areerak, K., Bozhko, S., Hill, C.I.: Maximum power point tracking for stand-alone wind energy conversion system using FLC-P&O method. IEEJ Trans. Electr. Electron. Eng. 15(12), 1723 (2020)
Petrila, D., Blaabjerg, F., Muntean, N., Lascu, C.: Fuzzy logic based MPPT controller for a small wind turbine system. In: 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) (2012)
Amine, H.M., Abdelaziz, H., Najib, E.: Wind turbine maximum power point tracking using FLC tuned with GA. Energy Procedia 62, 364–373 (2014)
El-Tamaly, H.H., Nassef, A.Y.: Tip speed ratio and Pitch angle control based on ANN for putting variable speed WTG on MPP. In: Eighteenth International Middle East Power Systems Conference (MEPCON) (2016)
Li, H., Shi, K.L., McLaren, P.G.: Neural-network-based sensorless maximum wind energy capture with compensated power coefficient. IEEE Trans. Ind. Appl. 41(6), 1548–1556 (2005)
Thongam, J.S., Bouchard, P., Ezzaidi, H., Ouhrouche, M.: Artificial neural network-based maximum power point TrackingControl for variable speed wind energy conversion systems. In: Control Applications, (CCA) & Intelligent Control, Saint Petersburg, Russia (2009)
Ren, Y.F., Bao, G.Q.: Control strategy of maximum wind energy capture of direct-drive wind turbine generator based on neural-network. In: Asia-Pacific Power and Energy Engineering Conference, China (2010)
Hayati, M., Rezaei, A., Noori, L.: Application of radial basis function network for the modeling and simulation of turbogenerator. J. Adv. Inf. Technol. 4(2), 76–79 (2013)
Yilmaz, A.S., Ozer, Z.: Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks. Expert Syst. Appl. 36(6), 9767–9775 (2009)
Sabzevari, S., Karimpour, A., Monfared, M., Naghibi Sistani, M.B.: MPPT control of wind turbines by direct adaptive fuzzy-PI controller and using ANN-PSO wind speed estimator. J. Renew. Sustain. Energy 9(1), 013302 (2017)
Oguz, Y., Guney, I.: Adaptive neuro-fuzzy inference system to improve the power quality of variable-speed wind power generation system. Turk. J. Electr. Eng. Comput. Sci. 18(4), 625–645 (2010)
Meharrar, A., Tioursi, M., Hatti, M., Stambouli, A.B.: A variable speed wind generator maximum power tracking based on adaptative neuro-fuzzy inference system. Expert Syst. Appl. 38, 7659–7664 (2011)
Slah, H., Mehdi, D., Lassaad, S.: Advanced control of a PMSG wind turbine. Int. J. Mod. Nonlinear Theory Appl. 5, 1–10 (2016)
Jemaa, A., Zarrad, O., Mansouri, M.: Performance assessment of a wind turbine with variable speed wind using artificial neural network and neuro-fuzzy controllers. Int. J. Syst. Appl. Eng. Dev. 11(3), 167–172 (2017)
Ali, A., Moussa, A., Abdelatif, K., Eissa, M., Wasfy, S., Malik, O.P.: ANFIS based controller for rectifier of PMSG wind energy conversion system energy conversion system. In: 2014 IEEE Electrical Power and Energy Conference IEEE (2014)
Sitharthan, R., Geethanjali, M.: ANFIS based wind speed sensor-less MPPT controller for variable speed wind energy conversion systems. Aust. J. Basic Appl. Sci. 8(18), 14–23 (2014)
Padmaja, A., Srikanth, M.: Design of MPPT controller using ANFIS and HOMER based sensitivity analysis for MXS 60 PV module. Int. J. Innov. Res. Adv. Eng. (IJIRAE) 11(2), 40–50 (2014)
Muthukumari, T., Raghavendiran, T.A., Kalaivani, R., Selvaraj, P.: Intelligent tuned PID controller for wind energy conversion system with permanent magnet synchronous generator and AC-DC-AC converters. IAES Int. J. Robot. Autom. 8(2), 133 (2019)
Acknowledgements
The authors wish to extend their great gratitude to Punjabi university Patiala, and Ministry of science and higher education of Ethiopia.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mitiku, T., Manshahia, M.S. (2022). A Literature Review on the MPPT Techniques Applied in Wind Energy Harvesting System. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing & Optimization. ICO 2021. Lecture Notes in Networks and Systems, vol 371. Springer, Cham. https://doi.org/10.1007/978-3-030-93247-3_73
Download citation
DOI: https://doi.org/10.1007/978-3-030-93247-3_73
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93246-6
Online ISBN: 978-3-030-93247-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)