Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Graph Summarization with Latent Variable Probabilistic Models

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1073))

Included in the following conference series:

Abstract

This study addresses the issue of summarizing a static graph, known as graph summarization, effectively and efficiently. The resulting compact graph is referred to as a summary graph. Based on the minimum description length principle (MDL), we propose a novel graph summarization algorithm called the graph summarization with latent variable probabilistic models (GSL) for a static graph. MDL asserts that the best statistical decision strategy is the one that best compresses the data. The key idea of GSL is encoding the original and summary graphs simultaneously using latent variable probabilistic models with two-part coding, that is, first encoding a summary graph, then encoding the original graph given the summary graph. When encoding these graphs, we can use various latent variable probabilistic models. Therefore, we can encode a more complex graph structure than the conventional graph summarization algorithms. We demonstrate the effectiveness of GSL on both synthetic and real datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beg, M.A., Ahmad, M., Zaman, A., Khan, I.: Scalable approximation algorithm for graph summarization. In: Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2018, pp. 502–514 (2018)

    Google Scholar 

  2. Fukushima, S., Yamanishi, K.: Hierarchical change detection in latent variable models. In: Proceedings of 2020 IEEE International Conference on Data Mining, ICDM2020, pp. 1128–1134 (2020)

    Google Scholar 

  3. Grünwald, P.: The Minimum Description Length Principle. MIT Press (2007)

    Google Scholar 

  4. Hric, D., Peixoto, T.P., Fortunato, S.: Network structure, metadata, and the prediction of missing nodes and annotations. Phys. Rev. X 6(3), 031038 (2016)

    Google Scholar 

  5. Kontkanen, P., Myllymäki, P.: A linear-time algorithm for computing the multinomial stochastic complexity. Inf. Process. Lett. 103(6), 227–233 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Koutra, D., Kang, U., Vreeken, J., Faloutsos, C.: VOG: summarizing and understanding large graphs. In: Proceedings of the 2014 SIAM International Conference on Data Mining, SDM 2014, pp. 91–99 (2014)

    Google Scholar 

  7. Lee, K., Jo, H., Ko, J., Lim, S., Shin, K.: SSumM: sparse summarization of massive graphs. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020, pp. 144–154 (2020)

    Google Scholar 

  8. LeFevre, K., Terzi, E.: GraSS: graph structure summarization. In: Proceedings of the 2010 SIAM International Conference on Data Mining, SDM 2010, pp. 454–465 (2010)

    Google Scholar 

  9. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2005, pp. 177–187 (2005)

    Google Scholar 

  10. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1), 2-es (2007)

    Article  Google Scholar 

  11. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, Y., Safavi, T., Dighe, A., Koutra, D.: Graph summarization methods and applications: a survey. ACM Comput. Surv. 51(3), 62:1-62:34 (2018)

    Google Scholar 

  13. Mariadassou, M., Robin, S., Vacher, C.: Uncovering latent structure in valued graphs: a variational approach. Ann. Appl. Stat. 4(2), 715–742 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. McAuley, J., Leskovec, J.: Learning to discover social circles in ego networks. In: Proceedings of the 25th Advances in Neural Information Processing Systems, NIPS 2012, pp. 539–547 (2012)

    Google Scholar 

  15. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded error. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, pp. 419–432 (2008)

    Google Scholar 

  16. Peixoto, T.P.: Entropy of stochastic blockmodel ensembles. Phys. Rev. E 85(5), 056122 (2012)

    Article  Google Scholar 

  17. Peixoto, T.P.: Parsimonious module inference in large networks. Phys. Rev. Lett. 110, 148701 (2013)

    Article  Google Scholar 

  18. Peixoto, T.P.: Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models. Phys. Rev. E 89, 012804 (2014)

    Article  Google Scholar 

  19. Peixoto, T.P.: Hierarchical block structures and high-resolution model selection in large networks. Phys. Rev. X 4, 011047 (2014)

    Google Scholar 

  20. Peixoto, T.P.: Model selection and hypothesis testing for large-scale network models with overlapping groups. Phys. Rev. X 5, 011033 (2015)

    Google Scholar 

  21. Riondato, M., García-Soriano, D., Bonchi, F.: Graph summarization with quality guarantees. Data Min. Knowl. Disc. 31(2), 314–349 (2016). https://doi.org/10.1007/s10618-016-0468-8

    Article  MathSciNet  MATH  Google Scholar 

  22. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  23. Rissanen, J.: A universal prior for integers and estimation by minimum description length. Ann. Stat. 11(2), 416–431 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rissanen, J.: Optimal Estimation of Parameters (2012)

    Google Scholar 

  25. Shtar’kov, Y.M.: Universal sequential coding of single messages. Probl. Inf. Transm. 23(3), 3–17 (1987)

    MATH  Google Scholar 

  26. Snijders, T.A.B., Nowicki, K.: Estimation and prediction for stochastic blockmodels for graphs with latent block structure. J. Classif. 14(1), 75–100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Catalá, T.V., Peixoto, T.P., Pardo, M.S., Guimerá, R.: Consistencies and inconsistencies between model selection and link prediction in networks. Phys. Rev. E 97, 062316 (2018)

    Article  Google Scholar 

  28. Wu, T., Sugawara, S., Yamanishi, K.: Decomposed normalized maximum likelihood codelength criterion for selecting hierarchical latent variable models. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017, pp. 1165–1174 (2017)

    Google Scholar 

  29. Wu, Y., Zhong, Z., Xiong, W., Jing, N.: Graph summarization for attributed graphs. In: Proceedings of 2014 International Conference on Information Science, Electronics and Electrical Engineering, ISEEE 2014, vol. 1, pp. 503–507 (2014)

    Google Scholar 

  30. Yamanishi, K., Fukushima, S.: Model change detection with the MDL principle. IEEE Trans. Inf. Theor. 9(64), 6115–6126 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yamanishi, K., Miyaguchi, K.: Detecting gradual changes from data stream using MDL-change statistics. In: Proceedings of 2016 IEEE International Conference on BigData, BigData 2016, pp. 156–163 (2016)

    Google Scholar 

  32. Yamanishi, K., Wu, T., Sugawara, S., Okada, M.: The decomposed normalized maximum likelihood code-length criterion for selecting hierarchical latent variable models. Data Min. Knowl. Disc. 33(4), 1017–1058 (2019). https://doi.org/10.1007/s10618-019-00624-4

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhou, H., Liu, S., Lee, K., Shin, K., Shen, H., Cheng, X.: DPGS: degree-preserving graph summarization. In: Proceedings of the 2021 SIAM International Conference on Data Mining, SDM 2021, pp. 280–288 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by JST KAKENHI 191400000190 and JST-AIP JPMJCR19U4.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

A MDL Principle

A MDL Principle

Two-Part Coding. Let Y be a random variable and y be a realization. Assume that we observe a set of data \(y^{n} = y_{1}, \dots , y_{n} \in \mathcal {Y}^{n}\), where \(y_{i} \in \mathbb {R}^{d} \, (i=1, \dots , n)\), and \(\mathcal {Y}\) denotes the data domain. The fundamental idea of the MDL principle is to select the best model that minimizes the total code-lengths of the model and data. Let us consider the following parametric model families:

$$\begin{aligned} \mathcal {F} = \{ f(Y^{n} ; \theta , M \in \mathcal {M}) : \theta \in \varTheta \}, \end{aligned}$$
(13)

where \(\mathcal {M}\) is a model space and M is a model. Here, in the case of SBM, a model refers to a family of models with the fixed number of groups (clusters), and \(\mathcal {M}\) is a set of the family of models with various numbers of groups (clusters). Let us consider how to encode data \(y^{n}\) and model M, simultaneously. When we use a prefix code-length L, the total code-length required to encode data \(y^{n}\) and M is decomposed into a sum of the code-length of the data given the model and that of the model itself as

$$\begin{aligned} L(y^{n} : M) = L(y^{n} | M) + L(M), \end{aligned}$$
(14)

where \(L(y^{n} : M)\), \(L(y^{n} |M)\), and L(M) denote the total code-length required to encode \(y^{n}\) and M, the code-length to encode \(y^{n}\) for the given M, and M, respectively. The prefix code-length refers to the code-length encoded with the prefix coding that satisfies the following Kraft’s inequalities [24]: \(\sum _{ y \in \mathcal {Y} } 2^{-L(y | M) } \le 1\) and \(\sum _{M \in \mathcal {M}} 2^{-L(M)} \le 1\). Then, the MDL criterion asserts that the total code-length \(L(y^{n}: M)\) should be minimized with respect to M:

$$\begin{aligned} L(y^{n} : M) = L(y^{n} | M) + L(M) \quad \Longrightarrow \min . \, \, \mathrm {w.r.t.} \, M. \end{aligned}$$

Normalized Maximum Likelihood (NML) Code-Length. We consider how to achieve the shortest code-length for a family of distributions in Eq. (13). Here, we introduce the normalized maximum likelihood (NML) code-length. The NML code-length is the optimal code-length that achieves Shtarkov’s minimax regret [25]. We consider a model class in Eq. (13). The NML code-length achieves the following Shtarkov’s minimax regret:

$$\begin{aligned} \min _{g} \max _{y^{n} \in \mathcal {Y}^{n}} \left\{ -\log { g(y^{n}) } - \min _{\theta } (-\log { f(y^{n} ; \theta , M) } ) \right\} , \end{aligned}$$

where g is called the normalized maximum likelihood (NML) distribution, a distribution that achieves the minimum regret. The NML distribution \(f_{\mathrm {NML}}\) is described as follows: \(f_{\mathrm {NML}}(y^{n}) = \frac{ f(y^{n}; \hat{\theta }(y^{n}), M) }{ \int f(Y^{n}; \hat{\theta }(Y^{n}), M) \, d{Y^{n}} }\), where \(\hat{\theta }(y^{n})\) is the following maximum likelihood estimator: . It is possible to encode \(y^{n}\) with the following code-length using the NML distribution:

(15)

The code-length \(L_{\mathrm {NML}}(y^{n}; M)\) in Eq. (15) is called the NML code-length and the last term in the right-hand side is called the parametric complexity to \(\mathcal {F}\) in Eq. (13) with data length n.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fukushima, S., Kanai, R., Yamanishi, K. (2022). Graph Summarization with Latent Variable Probabilistic Models. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-93413-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93413-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93412-5

  • Online ISBN: 978-3-030-93413-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics