Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SPNC: Fast Sum-Product Network Inference

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2021)

Abstract

Sum-Product Networks have received increasing attention from academia and industry alike, but the software ecosystem is comparably sparse. In this work, we enhance the ecosystem with an open-source, domain-specific compiler that allows to easily and efficiently target CPUs and GPUs for Sum-Product Network inference. The implementation of the compiler is based on the open-source MLIR framework. Using a real-world application of Sum-Product Networks, a robust speaker identification model, we showcase the performance improvements our compiler can achieve for SPN inference on CPUs and GPUs.

Calculations for this research were conducted on the Lichtenberg high performance computer of TU Darmstadt. This research was funded by the German Federal Ministry for Education and Research (BMBF) with the funding ID ZN 01\(\vert \)S17050.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://mlir.llvm.org.

  2. 2.

    https://github.com/pybind/pybind11.

  3. 3.

    https://capnproto.org/.

  4. 4.

    https://github.com/anicolson/SPN-ASI.

  5. 5.

    https://github.com/esa-tu-darmstadt/spn-compiler.

References

  1. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)

    Article  MathSciNet  Google Scholar 

  2. Lattner, C., et al.: Mlir: scaling compiler infrastructure for domain specific computation. In: CGO 2021 (2021)

    Google Scholar 

  3. Molina, A., et al.: Spflow: an easy and extensible library for deep probabilistic learning using sum-product networks (2019)

    Google Scholar 

  4. Nicolson, A., Paliwal, K.K.: Sum-product networks for robust automatic speaker identification (2020)

    Google Scholar 

  5. Paris, I., Sanchez-Cauce, R., Diez, F.J.: Sum-product networks: A survey (2020)

    Google Scholar 

  6. Peharz, R., et al.: Random sum-product networks: a simple but effective approach to probabilistic deep learning. In: Proceedings of UAI (2019)

    Google Scholar 

  7. Poon, H., Domingos, P.: Sum-product networks: a new deep architecture. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops) (2011)

    Google Scholar 

  8. Pronobis, A., Ranganath, A., Rao, R.P.: Libspn: a library for learning and inference with sum-product networks and tensorflow. In: Principled Approaches to Deep Learning Workshop (2017)

    Google Scholar 

  9. Sommer, L., Oppermann, J., Molina, A., Binnig, C., Kersting, K., Koch, A.: Automatic mapping of the sum-product network inference problem to fpga-based accelerators. In: IEEE International Conference on Computer Design (ICCD), IEEE (2018)

    Google Scholar 

  10. Sommer, L., Weber, L., Kumm, M., Koch, A.: Comparison of arithmetic number formats for inference in sum-product networks on fpgas. In: 2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) (2020)

    Google Scholar 

  11. Sugiarto, I., Axenie, C., Conradt, J.: Fpga-based hardware accelerator for an embedded factor graph with configurable optimization. J. Circuits Syst. Comput. 28(02), 1950031 (2019)

    Article  Google Scholar 

  12. van de Wolfshaar, J., Pronobis, A.: Deep Generalized Convolutional Sum-Product Networks for Probabilistic Image Representations. arXiv:1902.06155 (September 2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Sommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sommer, L., Axenie, C., Koch, A. (2021). SPNC: Fast Sum-Product Network Inference. In: Kamp, M., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2021. Communications in Computer and Information Science, vol 1524. Springer, Cham. https://doi.org/10.1007/978-3-030-93736-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93736-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93735-5

  • Online ISBN: 978-3-030-93736-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics