Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploring Explainable AI in the Financial Sector: Perspectives of Banks and Supervisory Authorities

  • Conference paper
  • First Online:
Artificial Intelligence and Machine Learning (BNAIC/Benelearn 2021)

Abstract

Explainable artificial intelligence (xAI) is seen as a solution to making AI systems less of a “black box”. It is essential to ensure transparency, fairness, and accountability – which are especially paramount in the financial sector. The aim of this study was a preliminary investigation of the perspectives of supervisory authorities and regulated entities regarding the application of xAI in the financial sector. Three use cases (consumer credit, credit risk, and anti-money laundering) were examined using semi-structured interviews at three banks and two supervisory authorities in the Netherlands. We found that for the investigated use cases a disparity exists between supervisory authorities and banks regarding the desired scope of explainability of AI systems. We argue that the financial sector could benefit from clear differentiation between technical AI (model) explainability requirements and explainability requirements of the broader AI system in relation to applicable laws and regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schwab, K.: The Fourth Industrial Revolution, Random House LCC US (2017)

    Google Scholar 

  2. Zhang, D., et al.: The AI Index 2021 Annual Report. arXiv preprint arXiv:2103.06312 (2021)

  3. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Google Scholar 

  4. Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B.: Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. 116(44), pp. 22071–22080 (2019)

    Google Scholar 

  5. European Commission: Proposal for a regulation of the European Parliament and of the Council laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206. Accessed 12 June 2021

  6. Van der Cruijsen, C., De Haan, J., Roerink, R.: Financial Knowledge and Trust in Financial Institutions, Netherlands Central Bank, Research Department (2019)

    Google Scholar 

  7. Giudici, P., Hochreiter, R., Osterrieder, J., Papenbrock, J., Schwendner, P.: AI and financial technology. Front. Artif. Intell. 2, 25 (2019)

    Article  Google Scholar 

  8. Bauer, K., Hinz, O., Van der Aalst, W., Weinhardt, C.: Expl(AI)n it to me–explainable ai and information systems research. Bus. Inf. Syst. Eng. 63(2) (2021)

    Google Scholar 

  9. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  Google Scholar 

  10. Mueller, H., Ostmann, F.: AI transparency in financial services, The Alan Turing Institute. https://www.turing.ac.uk/news/ai-transparency-financial-services. Accessed 28 May 2021

  11. The High-Level Expert Group on Artificial Intelligence, Ethics Guidelines for Trustworthy A, EU Document. https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai. Accessed 21 May 2021

  12. Belle, V., Papantonis, I.: Principles and practice of explainable machine learning. Front. Big Data4, 688969 (2021). https://doi.org/10.3389/fdata.2021.688969

  13. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence. IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  14. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 1–42 (2018)

    Article  Google Scholar 

  15. Van den Berg, M., Kuiper, O.X.: XAI in the financial sector. https://www.internationalhu.com/research/projects/explainable-ai-in-the-financial-sector. Accessed 08 Aug 2021

  16. McWaters, R., Blake, M., Galaski, R.: Navigating uncharted waters: a roadmap to responsible innovation with AI in financial services. Part of the Future of Financial Services Series. World Economic Forum (2019)

    Google Scholar 

  17. ICO (Information Commissioner’s Office) and Alan Turing Institute, Explaining decisions made with AI. https://ico.org.uk/for-organisations/guide-to-data-protection/key-data-protection-themes/explaining-decisions-made-with-ai/. Accessed 14 Apr 2021

  18. Xie, N., Ras, G., Van Gerven, M., Doran, D.: Explainable deep learning: a field guide for the uninitiated. arXiv Preprint arXiv:2004.14545 (2020)

  19. Lipton, Z.C.: The mythos of model Interpretability: in machine learning, the concept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)

    Article  Google Scholar 

  20. Schwalbe, G., Finzel, B.: AI method properties: a (Meta-)study (2021). ArXiv:2105.07190 http://arxiv.org/abs/2105.07190

  21. Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions. arXiv preprint arXiv:1705.07874 (2017)

  22. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  23. Gerlings, J., Shollo, A., Constantiou, I.: Reviewing the need for explainable artificial intelligence (xAI). In: Proceedings of the 54th Hawaii International Conference on System Sciences, pp. 1284–1293 (2021)

    Google Scholar 

  24. Confalonieri, R., Coba, L., Wagner, B., Besold, T.R.: A historical perspective of explainable artificial intelligence. Wiley Interdiscipl. Rev. Data Min. Knowl. Discov. 11(1), e1391 (2021)

    Google Scholar 

  25. Xu, W.: Toward human-centered AI: a perspective from human-computer interaction. Interactions 26(4), 42–46 (2019)

    Article  Google Scholar 

  26. Mueller, S.T., Hoffman, R.R., Clancey, W., Emrey, A., Klein, G.: Explanation in human-AI systems: a literature meta-review, synopsis of key ideas and publications, and bibliography for explainable AI. arXiv preprint arXiv:1902.01876 (2019)

  27. Zhang, B.Z., Ashta, A., Barton, M.E.: Do FinTech and financial incumbents have different experiences and perspectives on the adoption of artificial intelligence? Strateg. Chang. 30(3), 223–234 (2021)

    Article  Google Scholar 

  28. Joosen, B.P.: Regulatory capital requirements and bail in mechanisms. In: Haentjens, M., Wessels, B. (eds.) Research Handbook on Crisis Management in the Banking Sector. Edward Elgar Publishing (2015). https://www.elgaronline.com/view/edcoll/9781783474226/9781783474226.00022.xml

  29. Anti-Money Laundering and Anti-Terrorist Financing Act (Wet ter voorkoming van witwassen en financieren van terrorisme). https://wetten.overheid.nl/BWBR0024282/2021-07-01. Accessed 10 Sep 2021

  30. Dwivedi, Y.K., et al.: Artificial Intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 57, 101994 (2019)

    Google Scholar 

  31. Leijnen, S., Aldewereld, H., Van Belkom, R., Bijvank, R., Ossewaarde, R.: An agile framework for trustworthy AI. In: NeHuAI@ ECAI, pp. 75–78 (2020)

    Google Scholar 

  32. Köhl, M.A., Baum, K., Langer, M., Oster, D., Speith, T., Bohlender, B.: Explainability as a non-functional requirement. In: 2019 IEEE 27th International Requirements Engineering Conference, pp. 363–368 (2019)

    Google Scholar 

  33. Siena, A., Mylopoulos, M., Perini, A., Susi A.: From laws to requirements. In: 2008 Requirements Engineering and Law, pp. 6–10 (2008)

    Google Scholar 

  34. Van der Burgt, J.: General principles for the use of AI in the financial sector. https://www.dnb.nl/actueel/algemeen-nieuws/dnbulletin-2019/dnb-komt-met-richtlijnen-voor-gebruik-kunstmatige-intelligentie/. Accessed 21 May 2021

  35. Buckley, R.P., Zetzsche, D.A., Arner, D.W., Tang, B.W.: Regulating artificial intelligence in finance: putting the human in the loop. Sydney Law Rev. 43(1), 43–81 (2021)

    Google Scholar 

  36. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouren Kuiper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuiper, O., van den Berg, M., van der Burgt, J., Leijnen, S. (2022). Exploring Explainable AI in the Financial Sector: Perspectives of Banks and Supervisory Authorities. In: Leiva, L.A., Pruski, C., Markovich, R., Najjar, A., Schommer, C. (eds) Artificial Intelligence and Machine Learning. BNAIC/Benelearn 2021. Communications in Computer and Information Science, vol 1530. Springer, Cham. https://doi.org/10.1007/978-3-030-93842-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93842-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93841-3

  • Online ISBN: 978-3-030-93842-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics